
CPE WAN Management Protocol TR-069

TECHNICAL REPORT

DSL Forum
TR-069

CPE WAN Management Protocol

May 2004

Produced by:
DSLHome-Technical Working Group

Editors:

Jeff Bernstein, 2Wire
Tim Spets, Westell

Working Group Co-Chairs:

Greg Bathrick, Texas Instruments
George Pitsoulakis, Westell

Abstract:
A protocol for communication between a CPE and Auto-Configuration Server (ACS) that
encompasses secure auto-configuration as well as other CPE management functions
within a common framework.

 Page 1 of 109

CPE WAN Management Protocol TR-069

Notice:
The DSL Forum is a non-profit corporation organized to create guidelines for DSL network system
development and deployment. This Technical Report has been approved by members of the Forum. This
document is not binding on the DSL Forum, any of its members, or any developer or service provider
involved in DSL. The document is subject to change, but only with approval of members of the Forum.

©2001 Digital Subscriber Line Forum. All Rights Reserved.

DSL Forum technical reports may be copied, downloaded, stored on a server or otherwise re-distributed in
their entirety only.

Notwithstanding anything to the contrary, the DSL Forum makes no representation or warranty, expressed
or implied, concerning this publication, its contents or the completeness, accuracy, or applicability of any
information contained in this publication. No liability of any kind shall be assumed by the DSL Forum as a
result of reliance upon any information contained in this publication. The DSL Forum does not assume any
responsibility to update or correct any information in this publication.

The receipt or any use of this document or its contents does not in any way create by implication or
otherwise any express or implied license or right to or under any patent, copyright, trademark or trade
secret rights which are or may be associated with the ideas, techniques, concepts or expressions contained
herein.

NOTE: The user's attention is called to the possibility that compliance with this report may require use of
an invention covered by patent rights.

By publication of this report, no position is taken with respect to the validity of the claim or of any patent
rights in connection therewith. The patent holder has, however, filed a statement of willingness to grant a
license under these rights on reasonable and nondiscriminatory terms and conditions to applicants desiring
to obtain such a license. Details may be obtained from the publisher.

 Page 2 of 109

CPE WAN Management Protocol TR-069

Contents
1 Introduction ... 6

1.1 Functional Components .. 6
1.1.1 Auto-Configuration and Dynamic Service Provisioning... 6
1.1.2 Software/Firmware Image Management ... 6
1.1.3 Status and Performance Monitoring.. 6
1.1.4 Diagnostics ... 7
1.1.5 Identity Management for Web Applications... 7

1.2 Positioning in the Auto-Configuration Architecture .. 7
1.3 Security Goals ... 8
1.4 Architectural Goals .. 8
1.5 Assumptions.. 9
1.6 Terminology... 9
1.7 Document Conventions ..10

2 Architecture..10
2.1 Protocol Components...10
2.2 Security Mechanisms ...11

2.2.1 Security Initialization Models..11
2.3 Architectural Components ..12

2.3.1 Parameters ..12
2.3.2 File Transfers ...12
2.3.3 CPE Initiated Notifications..13
2.3.4 Asynchronous ACS Initiated Notifications ..13

3 Procedures and Requirements ..13
3.1 ACS Discovery ...13
3.2 Connection Establishment..14

3.2.1 CPE Connection Initiation ..14
3.2.2 ACS Connection Initiation ..15

3.3 Use of SSL/TLS and TCP ..16
3.4 Use of HTTP...16

3.4.1 Encoding SOAP over HTTP...16
3.4.2 Transaction Sessions...17
3.4.3 File Transfers ...18
3.4.4 Authentication ..18

3.5 Use of SOAP..18
3.6 RPC Support Requirements ...22
3.7 Transaction Session Procedures..22

3.7.1 CPE Operation...23
3.7.2 ACS Operation...24
3.7.3 Transaction Examples..26

Normative References ...28

Appendix A. RPC Methods ..29
A.1 Introduction ..29
A.2 RPC Method Usage ...29

A.2.1 Data Types...29
A.2.2 Other Requirements ...30

A.3 Baseline RPC Messages ...30
A.3.1 Generic Methods ..30

A.3.1.1 GetRPCMethods..30
A.3.2 CPE Methods ...31

A.3.2.1 SetParameterValues ..31
A.3.2.2 GetParameterValues..32
A.3.2.3 GetParameterNames ...33
A.3.2.4 SetParameterAttributes..33
A.3.2.5 GetParameterAttributes ...35

 Page 3 of 109

CPE WAN Management Protocol TR-069

A.3.2.6 AddObject ..36
A.3.2.7 DeleteObject ..37
A.3.2.8 Download ...38
A.3.2.9 Reboot ...39

A.3.3 Server Methods..40
A.3.3.1 Inform...40
A.3.3.2 TransferComplete ..43

A.4 Optional RPC Messages..44
A.4.1 CPE Methods ...44

A.4.1.1 GetQueuedTransfers ...44
A.4.1.2 ScheduleInform..44
A.4.1.3 SetVouchers ..45
A.4.1.4 GetOptions...45
A.4.1.5 Upload..46
A.4.1.6 FactoryReset..47

A.4.2 Server Methods..47
A.4.2.1 Kicked ..47
A.4.2.2 RequestDownload..48

A.5 Fault Handling..49
A.5.1 CPE Fault Codes..49
A.5.2 Server Fault Codes ..49
A.5.3 Server Method Retry Behavior ...50

Appendix B. CPE Parameters..51
B.1 Introduction ..51
B.2 CPE Parameters ..51

B.2.1 Data Types...52
B.2.2 Vendor-Specific Parameters ..52
B.2.3 Parameter List ..53

Appendix C. Signed Vouchers ..91
C.1 Overview..91
C.2 Control of Options Using Vouchers..91
C.3 Voucher Definition..91

Appendix D. Web Identity Management ...96
D.1 Overview..96
D.2 Use of the Kicked RPC Method ...96
D.3 Web Identity Management Procedures ..96
D.4 LAN Side Interface...97

Appendix E. Signed Package Format...99
E.1 Introduction ..99
E.2 Signed Package Format Structure ...99

E.2.1 Encoding Conventions ...100
E.3 Header Format...100
E.4 Command List Format..100

E.4.1 Command Types ..100
E.4.2 End Command ...101
E.4.3 Extract and Add Commands ..102
E.4.4 Remove Commands...102
E.4.5 Move Commands ...103
E.4.6 Version and Description Commands ..104
E.4.7 Timeout Commands ...104

 Page 4 of 109

CPE WAN Management Protocol TR-069

E.4.8 Reboot Command ..106
E.4.9 Format File System ..106
E.4.10 Minimum and Maximum Version Commands...106
E.4.11 Role Command ..107
E.4.12 Minimum Storage Commands..107
E.4.13 Required Attributes Command ...108

E.5 Signatures..108

 Page 5 of 109

CPE WAN Management Protocol TR-069

1 Introduction
This document describes the CPE WAN Management Protocol, intended for communication between a
CPE and Auto-Configuration Server (ACS). The CPE WAN Management Protocol defines a mechanism
that encompasses secure auto-configuration of a CPE, and also incorporates other CPE management
functions into a common framework.

1.1 Functional Components
The CPE WAN Management Protocol is intended to support a variety of functionalities to manage a
collection of CPE, including the following primary capabilities:

• Auto-configuration and dynamic service provisioning

• Software/firmware image management

• Status and performance monitoring

• Diagnostics

1.1.1 Auto-Configuration and Dynamic Service Provisioning
The CPE WAN Management Protocol allows an ACS to provision a CPE or collection of CPE based on a
variety of criteria. The provisioning mechanism includes specific provisioning parameters and a general
mechanism for adding vendor-specific provisioning capabilities as needed.

The provisioning mechanism allows CPE provisioning at the time of initial connection to the broadband
access network, and the ability to re-provision at any subsequent time. This includes support for
asynchronous ACS-initiated re-provisioning of a CPE.

The identification mechanisms included in the protocol allow CPE provisioning based either on the
requirements of each specific CPE, or on collective criteria such as the CPE vendor, model, software
version, or other criteria.

The protocol also provides optional tools to manage the CPE-specific components of optional applications
or services for which an additional level of security is required to control, such as those involving
payments. The mechanism for control of such Options using digitally signed Vouchers is defined in
Appendix C.

The provisioning mechanism allows straightforward future extension to allow provisioning of services and
capabilities not yet included in this version of the specifications.

1.1.2 Software/Firmware Image Management
The CPE WAN Management Protocol provides tools to manage downloading of CPE software/firmware
image files. The protocol provides mechanisms for version identification, file download initiation (ACS
initiated downloads and optional CPE initiated downloads), and notification of the ACS of the success or
failure of a file download.

The CPE WAN Management Protocol also defines a digitally signed file format that may optionally be
used to download either individual files or a package of files along with explicit installation instructions for
the CPE to perform. This signed package format ensures the integrity of downloaded files and the
associated installation instructions, allowing authentication of a file source that may be a party other than
the ACS operator.

1.1.3 Status and Performance Monitoring
The CPE WAN Management Protocol provides support for a CPE to make available information that the
ACS may use to monitor the CPE’s status and performance statistics. The protocol defines a common set
of such parameters, and provides a standard syntax for vendors to define additional non-standard

 Page 6 of 109

CPE WAN Management Protocol TR-069

parameters that an ACS can monitor. It also defines a set of conditions under which a CPE should actively
notify the ACS of changes.

1.1.4 Diagnostics
The CPE WAN Management Protocol provides support for a CPE to make available information that the
ACS may use to diagnose connectivity or service issues. The protocol defines a common set of such
parameters and a general mechanism for adding vendor-specific diagnostic capabilities.

1.1.5 Identity Management for Web Applications
To support web-based applications for access from a browser within the CPE’s local network, the CPE
WAN Management Protocol defines an optional mechanism that allows such web sites to customize their
content with explicit knowledge of the associated CPE. This mechanism is described in Appendix D.

1.2 Positioning in the Auto-Configuration Architecture
TR-046 [2] describes the overall framework for B-NT auto-configuration. This process consists of three
sequential stages, each of which is focused on a specific aspect of the overall B-NT auto-configuration
process.

The procedures for the first two stages of B-NT auto-configuration are specified in TR-062 [3] and TR-044
[4]. These define the ATM layer and IP layer auto-configuration procedures, respectively, used to initiate
basic broadband connectivity.

The third stage of auto-configuration defined in TR-046 covers “auto-configured complex services.” In the
case of a B-NT, the CPE WAN Management Protocol relates primarily to this third stage. Specifically, the
CPE WAN Management Protocol is proposed as the protocol to be used on the ACS-Southbound Interface
between an Auto-Configuration Server (ACS), and a B-NT as shown in Figure 1.

Note—in the case of a B-NT, contrary to the nested model of TR-046, this protocol also allows
configuration of ATM Layer parameters if an alternative auto-configuration protocol is not in use,
e.g., as defined in TR-062. However, if an alternative is in use then configuration of the ATM
Layer parameters by this protocol is disabled.

In addition to configuration, the protocol provides a means of extracting diagnostic and
performance monitoring data from the ATM layer and the DSL modem. Again this is contrary to
the nested model described in TR-046, but provides an alternative means of accessing information
that can already be obtained through existing management protocols, i.e., ILMI and the EOC of
the DSL link. The provision of more advanced diagnostic and performance monitoring
functionality via this protocol is a subject for further study.

While the CPE WAN Management Protocol is targeted at management of B-NTs, this protocol may be
used to manage other types of CPE as well, including stand-alone routers and LAN-side client devices, as
also shown in Figure 1. Unless otherwise indicated, the CPE WAN Management Protocol as defined in
this specification applies to any such managed device. Portions of this specification that apply only to a
B-NT are explicitly indicated in the text. This specification includes a complete definition of the CPE
parameter model for a B-NT. The corresponding parameter model for other specific device types is beyond
the scope of this specification.

 Page 7 of 109

CPE WAN Management Protocol TR-069

Figure 1 – Positioning in the Auto-Configuration Architecture

LAN

Managed
CPE (B-NT)

Regional
Broadband

Network

DSLAMBRAS

ACS

Scope of
CPE WAN Management Protocol:

ACS Southbound InterfaceService
Configuration

Manager

ACS Northbound
Interface

Managed CPE
(LAN Device)

1.3 Security Goals
The CPE WAN Management Protocol is designed to provide a high degree of security. The security model
is also designed to be scalable. It is intended to allow basic security to accommodate less robust CPE
implementations, while allowing greater security for those that can support more advanced security
mechanisms. In general terms, the security goals of the CPE WAN Management Protocol are as follows:

• Prevent tampering with the management functions of a CPE or ACS, or the transactions that take place
between a CPE and ACS.

• Provide confidentiality for the transactions that take place between a CPE and ACS.

• Allow appropriate authentication for each type of transaction.

• Prevent theft of service.

1.4 Architectural Goals
The protocol is intended to provide flexible support for various business models for distributing and
managing CPE, including:

• CPE provided and managed by the network provider.

• CPE purchased in retail with pre-registration to associate the specific CPE with a service provider and
customer account (a mobile-phone like model)

• CPE purchased in retail with post-installation user registration with a service provider.

The protocol is intended to provide flexibility in the connectivity model. The protocol is intended to
provide the following:

• Allow both CPE and ACS initiated connection establishment, avoiding the need for a persistent
connection to be maintained between each CPE and an ACS.

• The functional interactions between the ACS and CPE should be independent of which end initiated
the establishment of the connection. In particular, even where ACS initiated connectivity is not
supported, all ACS initiated transactions should be able to take place over a connection initiated by the
CPE.

• Allow one or more ACS servers to serve a population of CPE, which may be associated with one or
more service providers.

 Page 8 of 109

CPE WAN Management Protocol TR-069

• Optimize the use of connections that are established to minimize connection overhead by allowing
multiple bi-directional transactions to occur over a single connection.

The protocol is intended to support discovery and association of ACS and CPE:

• Provide mechanisms for a CPE to discover the appropriate ACS for a given service provider.

• Provide mechanisms to allow an ACS to securely identify a CPE and associate it with a user/customer.
Processes to support such association should support models that incorporate user interaction as well as
those that are fully automatic.

The protocol model to allow an ACS access to control and monitor various parameters associated with a
CPE. The mechanisms provided to access these parameters is designed with the following premises:

• Different CPE may have differing capability levels, implementing different subsets of optional
functionality. As a result, an ACS must be able to discover the capabilities of a particular CPE.

• An ACS must be able to control and monitor the current configuration of a CPE.

• Other control entities besides an ACS may be able to control some parameters of a CPE’s
configuration (e.g., via LAN-side auto-configuration). As a result, the protocol must allow an ACS to
account for external changes to a CPE’s configuration. The ACS should also be able to control which
configuration parameters can be controlled via means other than by the ACS.

• The protocol should allow vendor-specific parameters to be defined and accessed.

The protocol is intended to minimize implementation complexity, while providing flexibility in trading off
complexity vs. functionality. The protocol incorporates a number of optional components that come into
play only if specific functionality is required. The protocol also incorporates existing standards where
appropriate, allowing leverage of off-the-shelf implementations.

The protocol is also designed to be extensible. It includes mechanisms to support future extensions to the
standard, as well as explicit mechanisms for vendor-specific extensions.

1.5 Assumptions
Some assumptions made in defining the CPE WAN Management Protocol are listed below:

• In the case of a B-NT, prior to use of the CPE WAN Management Protocol, initial B-NT auto-
configuration as defined in TR-062 [3] and TR-044 [4] has been completed and a connection has been
established to a WAN from which an ACS is accessible.

• All CPE regardless of type (bridge1, router, or other) obtain an IP address in order to communicate
with an ACS.

• A CPE can interact with a single ACS at a time. At any time, a CPE is aware of exactly one ACS with
which it can connect. An ACS can hand off a CPE to another ACS only by explicitly altering the ACS
contact and authentication information. (Note: a collection of ACS servers behind a load balancer is
considered a single ACS for the purposes of this document.)

1.6 Terminology
The following terminology is used throughout the series of documents defining the CPE WAN
Management Protocol.

ACS Auto-Configuration Server. This is a component in the broadband network responsible
for auto-configuration of the CPE for advanced services.

1 In the case of a bridge, the CPE must establish IP-layer connectivity specifically for management

communication. The mechanism used to establish this connectivity would depend on the specific
network architecture. For example, a bridge may connect using IPoE with DHCP for address allocation,
or may connect using PPPoE.

 Page 9 of 109

CPE WAN Management Protocol TR-069

B-NT A broadband access CPE device capable of being managed by an ACS.

CPE Customer Premise Equipment. A DSL B-NT is one form of broadband CPE.

Internet
Gateway
Device

A CPE device that is either a B-NT or a broadband router.

Option An optional CPE capability that may only be enabled or disabled using a digitally signed
Voucher.

RPC Remote procedure call.

Parameter A name-value pair representing a manageable CPE parameter made accessible to an ACS
for reading and/or writing.

Session A contiguous sequence of transactions between a CPE and an ACS.

Voucher A digitally signed data structure that instructs a particular CPE to enable or disable
Options, and characteristics that determine under what conditions the Options persist.

1.7 Document Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in [1].

2 Architecture

2.1 Protocol Components
The CPE WAN Management Protocol comprises several components that are unique to this protocol, and
makes use of several standard protocols. The protocol stack defined by the CPE WAN Management
Protocol is shown in Figure 2. A brief description of each layer is provided in Table 1.

Figure 2 – Protocol stack

CPE/ACS Management Application

RPC Methods

SOAP

HTTP

SSL/TLS

TCP/IP

 Page 10 of 109

CPE WAN Management Protocol TR-069

Table 1 – Protocol layer summary

Layer Description
CPE/ACS Application The application uses the CPE WAN Management Protocol on the CPE and ACS,

respectively. The application is locally defined and not specified as part of the CPE
WAN Management Protocol.

RPC Methods The specific RPC methods that are defined by the CPE WAN Management Protocol.
These methods are specified in Appendix A. This includes the definition of the CPE
Parameters accessible by an ACS via the Parameter-related RPC Methods. The
specific Parameters defined for an Internet Gateway Device are specified in Appendix B.

SOAP A standard XML-based syntax used here to encode remote procedure calls. Specifically
SOAP 1.1, as specified in [8].

HTTP HTTP 1.1, as specified in [5].

SSL/TLS The standard Internet transport layer security protocols. Specifically, either SSL 3.0
(Secure Socket Layer), as defined in [10], or TLS 1.0 (Transport Layer Security) as
defined in [11]. Use of SSL/TLS is RECOMMENDED but is not required.

TCP/IP Standard TCP/IP.

2.2 Security Mechanisms
The CPE WAN Management Protocol is designed to allow a high degree of security in the interactions that
use it. The CPE WAN Management Protocol is designed to prevent tampering with the transactions that
take place between a CPE and ACS, provide confidentiality for these transactions, and allow various levels
of authentication.

The following security mechanisms are incorporated in this protocol:

• The protocol supports the use of SSL/TLS for communications transport between CPE and ACS. This
provides transaction confidentiality, data integrity, and allows certificate-based authentication between
the CPE and ACS.

• The HTTP layer provides an alternative means of CPE authentication based on shared secrets.

The protocol includes additional security mechanisms associated with the optional signed Voucher
mechanism and the Signed Package Format, described in Appendix C and Appendix E, respectively.

2.2.1 Security Initialization Models
Initialization of the security mechanisms is described in the context of various business models for CPE
distribution. Three models are considered:

• Distribution of CPE by the service provider associated with the ACS.

• Retail distribution of the CPE, where association of the CPE with the service provider and customer is
done at the time of purchase.

• Retail distribution where no pre-association with the CPE is done.

In the first two cases, the specific identity of the CPE can be known to the ACS before the CPE is first
used. In these cases, the following mechanisms may be used:

Authentication
of

Type used Description

Shared secret Shared secret must be pre-loaded into CPE before the first use of the CPE. ACS

Certificate Discovery of the ACS URL as described in section 3.1 uniquely identifies the
identity of the ACS for the purpose of certificate validation.

Shared secret Shared secret must be provided to the ACS before the first use of the CPE. CPE

Certificate The CPE may use online certificate enrollment with the CA associated with the
ACS. The CPE must be provided with the information needed to contact this
CA.

 Page 11 of 109

CPE WAN Management Protocol TR-069

In the latter case of retail distribution of the CPE, there is no possibility of pre-association of the CPE with
a particular ACS. The following table presents possible approaches to accommodating this case, but does
not attempt to mandate a specific approach:

Authentication
of

Type used Description

Shared secret Not appropriate for this case. ACS

Certificate Discovery of the ACS URL as described in section 3.1 uniquely identifies the
identity of the ACS for the purpose of certificate validation.

Shared secret Possible alternatives, outside the scope of this specification:

• Establish a common server for secure distribution of CPE shared secrets
among multiple service providers.

• Initial CPE to ACS connection of an unrecognized CPE could be allowed
without authentication. ACS would then set the shared secret Parameter for
subsequent access. Care in ACS implementation would be required to
prevent denial of service attacks.

CPE

Certificate The CPE may use online certificate enrollment with the CA associated with the
ACS. The CPE must be provided with the information needed to contact this
CA, which could be incorporated into the discovery process.

2.3 Architectural Components

2.3.1 Parameters
The RPC Method Specification (see Appendix A) defines a generic mechanism by which an ACS can read
or write Parameters to configure a CPE and monitor CPE status and statistics. The particular list of defined
Parameters for an Internet Gateway Device is specified in Appendix B.

Each Parameter consists of a name-value pair. The name identifies the particular Parameter, and has a
hierarchical structure similar to files in a directory, with each level separated by a “.” (dot). The value of a
Parameter may be one of several defined data types (see Appendix B).

Parameters may be defined as read-only or read-write. Read-only Parameters may be used to allow an
ACS to determine specific CPE characteristics, observe the current state of the CPE, or collect statistics.
Writeable Parameters allow an ACS to customize various aspects of the CPE’s operation. All writeable
Parameters must also be readable. The value of some writeable Parameters may be independently
modifiable through means other than the interface defined in this specification (e.g., some Parameters may
also be modified via a LAN side auto-configuration protocol).

The protocol supports a discovery mechanism that allows an ACS to determine what Parameters a
particular CPE supports, allowing the definition of optional parameters as well as supporting
straightforward addition of future standard Parameters.

The protocol also includes an extensibility mechanism that allows use of vendor-specific Parameters in
addition to those defined in this specification.

2.3.2 File Transfers
The RPC Method Specification (see Appendix A) defines a mechanism to facilitate file downloads or
(optionally) uploads for a variety of purposes, such as firmware upgrades or vendor-specific configuration
files.

When initiated by the ACS, the CPE is provided with the location of the file to be transferred, using HTTP
or, optionally, HTTPS, FTP, or TFTP as the transport protocol. The CPE then performs the transfer, and
notifies the ACS of the success or failure.

 Page 12 of 109

CPE WAN Management Protocol TR-069

Downloads may be optionally initiated by a CPE. In this case, the CPE first requests a download of a
particular file type from the ACS. The ACS may then respond by initiating the download following the
same steps as an ACS-initiated download.

The CPE WAN Management Protocol also defines a digitally signed file format that may optionally be
used for downloads. This Signed Package Format is defined in Appendix E.

2.3.3 CPE Initiated Notifications
The RPC Method Specification (see Appendix A) defines a mechanism that allows a CPE to notify a
corresponding ACS of various conditions, and to ensure that CPE-to-ACS communication will occur with
some minimum frequency.

This includes mechanisms to establish communication upon initial CPE installation, to ‘bootstrap’ initial
customized Parameters into the CPE. It also includes a mechanism to establish periodic communication
with the ACS on an ongoing basis, or when events occur that must be reported to the ACS (such as when
the broadband IP address of the CPE changes). The ACS must be aware of this event in order to establish
incoming connections to the CPE.

In each case, when communication is established the CPE identifies itself uniquely via manufacturer and
serial number information so that the ACS knows which CPE it is communicating with and can respond in
an appropriate way.

2.3.4 Asynchronous ACS Initiated Notifications
An important aspect of service auto-configuration is the ability for the ACS to notify the CPE of a
configuration change asynchronously. This allows the auto-configuration mechanism to be used for
services that require near-real-time reconfiguration of the CPE. For example, this may be used to provide
an end-user with immediate access to a service or feature they have subscribed to, without waiting for the
next periodic Inform interval.

The CPE WAN Management Protocol incorporates a mechanism for the ACS to issue a Connection
Request to the CPE at any time, instructing it to establish a communication session with the ACS.

While the CPE WAN Management Protocol also allows polling by the CPE in lieu of ACS-initiated
connections, the CPE WAN Management Protocol does not rely on polling or establishment of persistent
connections from the CPE to provide asynchronous notification.

3 Procedures and Requirements

3.1 ACS Discovery
The CPE WAN Management Protocol defines the following mechanisms that may be used by a CPE to
discover the address of its associated ACS:

1. The CPE may be configured locally with the URL of the ACS. For example, this may be done via a
LAN-side CPE auto-configuration protocol. The CPE would use DNS to resolve the IP address of the
ACS from the host name component of the URL.

2. As part of the IP layer auto-configuration, a DHCP server on the access network may be configured to
include the ACS URL as a DHCP option [12]. The CPE would use DNS to resolve the IP address of
the ACS from the host name component of the URL. In this case a second DHCP option MAY be
used to set the ProvisioningCode, which may be used to indicate the primary service provider and
other provisioning information to the ACS.

A CPE identifies itself to the DHCP server as supporting this method by including the string
“dslforum.org” (all lower case) anywhere in the Vendor Class Identifier (DHCP option 60).

The CPE MAY use the values received from the DHCP server in the Vendor Specific Information
(DHCP option 43) to set the corresponding parameters as listed in Table 2. This DHCP option is

 Page 13 of 109

CPE WAN Management Protocol TR-069

encoded as a list of one or more Encapsulated Vendor-Specific Options in the format defined in [12].
This list may include other vendor-specific options in addition to those listed here.

Table 2 – Encapsulated Vendor Specific Options

Encapsulated
Option

Encapsulated Vendor-
Specific Option number

Parameter2

URL of the ACS 1 InternetGatewayDevice.ManagementServer.URL

Provisioning code 2 InternetGatewayDevice.DeviceInfo.ProvisioningCode

3. The CPE may have a default ACS URL that it may use if no other URL is provided to it.

The ACS URL MUST be in the form of a valid HTTP or HTTPS URL [5]. Use of an HTTPS URL
indicates that the ACS supports SSL. If an HTTPS URL is given, and the CPE that does not support SSL,
it MAY attempt to use HTTP assuming the remainder of the URL is unchanged.

Once the CPE has established a connection to the ACS, the ACS may at any time modify the ACS address
Parameter stored within the CPE (InternetGatewayDevice.ManagementServer.URL). Once modified, the
CPE MUST use the modified address for all subsequent connections to the ACS.

The “host” portion of the ACS URL is used by the CPE for validating the certificate from the ACS when
using certificate-based authentication. Because this relies on the accuracy of the ACS URL, the overall
security of this protocol is dependent on the security of the ACS URL.

The CPE SHOULD restrict the ability to locally configure the ACS URL to mechanisms that require strict
security. The CPE MAY further restrict the ability to locally set the ACS URL to initial setup only,
preventing further local configuration once the initial connection to an ACS has successfully been
established such that only its existing ACS may subsequently change this URL.

The use of DHCP for configuration of the ACS URL SHOULD be limited to situations in which the
security of the link between the DHCP server and the CPE can be assured by the service provider. Since
DHCP does not itself incorporate a security mechanism, other means of ensuring this security should be
provided.

3.2 Connection Establishment

3.2.1 CPE Connection Initiation
The CPE may at any time initiate a connection to the ACS using the pre-determined ACS address (see
section 3.1). A CPE MUST establish a connection to the ACS and issue the Inform RPC method
(following the procedures described in section 3.7) under the following conditions:

• The first time the CPE establishes a connection to the access network on initial installation

• On power-up or reset

• Once every PeriodicInformInterval (for example, every 24-hours)

• When so instructed by the optional ScheduleInform method

• Whenever the CPE receives a valid Connection Request from an ACS (see section 3.2.2)

• Whenever the URL of the ACS changes

• Whenever a parameter is modified that is required to initiate an Inform on change. In the case of
an Internet Gateway Device, this includes changes to the following (see A.3.3.1):

2 As defined for an Internet Gateway Device.

 Page 14 of 109

CPE WAN Management Protocol TR-069

o IP address of the default broadband connection

o Management IP address (associated with the Connection Request URL)

o Provisioning code

o Software version

• Whenever the value of a parameter that the ACS has marked for “active notification” via the
SetParameterAttributes method is modified by an external cause (a cause other than the ACS
itself). Parameter changes made by the ACS itself via SetParameterValues MUST NOT cause a
new session to be initiated. If a parameter is modified more than once before the CPE is able to
initiate a session to perform the notification, only one notification is performed.

If a parameter is modified by an external cause while a session is in progress, the change causes a
new session to be established after the current session is terminated (it MUST not effect the
current session).

In order to avoid excessive traffic to the ACS, a CPE MAY place a locally specified limit on the
frequency of parameter change notifications. This limit SHOULD be defined so that it is
exceeded only in unusual circumstances. If this limit is exceeded, the CPE MAY delay by a
locally specified amount initiation of a session to notify the ACS. After this delay, the CPE
MUST initiate a session to the ACS and indicate all relevant parameter changes (those parameters
that have been marked for notification) that have occurred since the last such notification.

The CPE SHOULD NOT maintain an open connection to the ACS when no more outstanding messages
exist on the CPE or ACS.

3.2.2 ACS Connection Initiation
The ACS at any time request that the CPE initiate a connection to the ACS using the Connection Request
notification mechanism. Support for this mechanism is REQUIRED in a CPE, and is RECOMMENDED
in an ACS.

This mechanism relies on the CPE having an IP address that is routable from the ACS. If the CPE is
behind a firewall or NAT device lying between the ACS and CPE, the ACS may not be able to access the
CPE at all. In this case, only CPE connection initiation is possible.

The Connection Request notification mechanism is defined as follows:

• The Connection Request notification is an HTTP Get to a specific URL designated by the CPE. The
URL value is available as read-only Parameter on the CPE. The path of this URL value SHOULD be
randomly generated by the CPE so that it is unique per CPE.

• The Connection Request notification MUST make use of HTTP, not HTTPS. The associated URL
MUST be an “http” URL.

• No data is conveyed in the Connection Request HTTP Get notification. Any data that might be
contained SHOULD be ignored by the CPE.

• The CPE SHOULD use digest-authentication to authenticate the ACS before proceeding—the CPE
SHOULD NOT initiate a connection to the ACS due to an unsuccessfully authenticated request. The
shared-secret used to authenticate the ACS is available as a modifiable Parameter on the CPE.

• The CPE SHOULD restrict the number of Connection Request notifications it accepts during a given
period of time in order to further reduce the possibility of a denial of service attack.

• The successful authentication of an HTTP Get to the designated port and URL causes the CPE to
perform a fixed action: it establishes a session with the pre-determined ACS address (see section 3.1),
and once connected, it sends an Inform message.

• If the CPE is already in a session with the ACS when it receives a Connection Request notification, it
MUST NOT terminate that session prematurely as a result.

 Page 15 of 109

CPE WAN Management Protocol TR-069

This mechanism relies on the ACS having had at least one prior communication with the CPE via a CPE-
initiated interaction. During this interaction, if the ACS wishes to allow future ACS-initiated transactions,
it would read the value of the InternetGatewayDevice.ManagementServer.ConnectionRequestURL
Parameter. If the URL used for management access changes, the CPE must notify the ACS by issuing an
Inform message indicating the new management IP address (as described in Table 33), thus keeping the
ACS up-to-date.

3.3 Use of SSL/TLS and TCP
The use of SSL/TLS to transport the CPE WAN Management Protocol is RECOMMENDED, although the
protocol may be used directly over a TCP connection instead. If SSL/TLS is not used, some aspects of
security are sacrificed. Specifically, SSL/TLS provides confidentiality and data integrity, and allows
certificate-based authentication in lieu of shared secret-based authentication.

Certain restrictions on the use of SSL/TLS and TCP are defined as follows:

• If SSL/TLS is supported, the REQUIRED versions are SSL 3.0 [10] or TLS 1.0 [11].

• If SSL/TLS is supported, support for encryption algorithms with key lengths greater than or equal to
128 bits SHOULD be supported.

• A CPE MUST be able to initiate outgoing connections to the ACS.

• An ACS MUST be able to accept CPE-initiated connections.

• If SSL/TLS is used, the CPE MUST authenticate the ACS using the ACS-provided certificate.

• If SSL/TLS is used, the ACS MAY accept a validated CPE-provided certificate to authenticate the
CPE, but the ACS MUST allow the SSL/TLS connection to be established if the CPE does not provide
a certificate.

3.4 Use of HTTP
SOAP messages are carried between a CPE and an ACS using HTTP 1.1 [5], where the CPE acts as the
HTTP client and the ACS acts as the HTTP server.

3.4.1 Encoding SOAP over HTTP
The encoding of SOAP over HTTP extends the basic HTTP profile for SOAP, described in [8], as follows:

• A SOAP request from an ACS to a CPE is sent over an HTTP response, while the CPE’s SOAP
response to an ACS request is sent over a subsequent HTTP post.

• Each HTTP post or response may contain more than one SOAP envelope (within the negotiated
limits). Each envelope may contain a SOAP request or response, independent from any other
envelope.

• When there is more than one envelope in a single HTTP Request, the SOAPAction header in the
HTTP Request MUST have no value (with no quotes), indicating that this header provides no
information as to the intent of the message. That is, it should appear as follows:

SOAPAction:

The Inform message contains an argument called MaxEnvelopes that indicates to the ACS the maximum
number of SOAP envelopes that may be contained in a single HTTP response. The value of this parameter
may be one or greater. Once the Inform message has been received, any HTTP response from the ACS
may include at most this number of SOAP envelopes (requests or responses).

The Inform response also contains an argument called MaxEnvelopes that indicates to the CPE the
maximum total number of SOAP envelopes that may be contained in a single HTTP post. The value of this

 Page 16 of 109

CPE WAN Management Protocol TR-069

parameter may be one or greater. Once the Inform response has been received, any HTTP post from the
CPE may include at most this total number of SOAP envelopes (requests or responses).

In each direction, the order of SOAP envelopes is defined independently from the number of envelopes
carried per HTTP post/response pair. Specifically, envelopes are ordered from first to last within a single
HTTP post/response and then between successive post/response pairs. That is, the succession of envelopes
within each HTTP post/response and then between successive posts or responses can be thought of as a
single ordered sequence of envelopes.

To ensure proper association of requests and responses, the requester MAY include an ID tag in the SOAP
header, which, if used, MUST be returned with the same value in the response. The encoding of this
header is described in section 3.5.

Below is an example HTTP Response from an ACS containing both a Response to a prior SOAP Request,
which included an ID Header, and an unrelated SOAP Request:

HTTP/1.1 200 OK
Content-Type: text/xml; charset="utf-8"
Content-Length: xyz

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
 <soap:Header>
 <cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>
 </soap:Header>
 <soap:Body>
 <cwmp:Response1>
 <argument>value</argument>
 </cwmp:Response1>
 </soap:Body>
</soap:Envelope>

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
 <soap:Body>
 <cwmp:Request2>
 <argument>value</argument>
 </cwmp:Request2>
 </soap:Body>
</soap:Envelope>

3.4.2 Transaction Sessions
For a sequence of transactions forming a single session, a CPE SHOULD maintain a TCP connection that
persists throughout the duration of the session.

To accommodate situations in which maintaining a continuous TCP connection is not possible (e.g.,
operating through an HTTP 1.0 proxy), the ACS SHOULD make use of a session cookie to maintain
session state as described in [7]. The ACS SHOULD use only cookies marked for Discard, and
SHOULD NOT assume that a CPE will maintain a cookie beyond the duration of the session.

To ensure that an ACS may make use of a session cookie, a CPE MUST support the use of cookies as
defined in [7] including the return of the cookie value in each subsequent HTTP post, with the exception
that a CPE need not support storage of cookies beyond the duration of a session.

When a transaction session is completed, a CPE MUST terminate the associated TCP connection to the
ACS and discard all cookies marked for Discard.

 Page 17 of 109

CPE WAN Management Protocol TR-069

3.4.3 File Transfers
If the CPE is instructed to perform a file transfer via the Download or Upload request from the ACS, and if
the file location is specified as an HTTP URL with the same host name as the ACS, then the CPE MAY
choose any of the following approaches in performing the transfer:

• The CPE MAY send the HTTP get/post over the already established connection. Once the file has
been transferred, the CPE MAY then proceed in sending additional messages to the ACS while
continuing to maintain the connection.

• The CPE MAY open a second connection over which to transfer the file, while maintaining the
session to the ACS over which it may continue to send messages.

• The CPE MAY terminate the session to the ACS and then perform the transfer.

If the file location is not an HTTP URL or is not in the same domain as the ACS, then only the latter two
options are available to it.

3.4.4 Authentication
If the CPE is not authenticated using SSL/TLS, the ACS MUST authenticate the CPE using HTTP. If
SSL/TLS is being used for encryption, the ACS MAY use either basic or digest authentication [6]. If
SSL/TLS is not being used, then the ACS MUST use digest authentication.

The ACS may issue the authentication once as part of the first HTTP transaction, and assume the
authentication to hold for the duration of the TCP connection.

If any form of HTTP authentication is used to authenticate the CPE, the CPE SHOULD use a
username/userid that is globally unique among all CPE manufacturers. Specifically it should be a multi-
part string comprising a manufacturer identifier and a serial number unique within that manufacturer. The
RECOMMENDED format for this string is:

OUI-SERIAL

where OUI is a six hexadecimal-digit value using all upper-case letters and including any leading zeros.
The OUI value MUST be a valid OUI as defined in [9]. SERIAL is a string that uniquely identifies the
CPE from the particular manufacturer. If the manufacturer has multiple CPE products with overlapping
serial number ranges, the SERIAL string MUST include additional distinguishing characters to ensure that
the entire string is unique.

Example: "00D09E-0123456789"

The password used in either form of HTTP authentication SHOULD be a unique value for each CPE. That
is, multiple CPE SHOULD NOT share the same password. This password is a shared secret, and thus
MUST be known by both CPE and ACS. The method by which a shared secret becomes known to both
entities on initial CPE installation is outside the scope of this specification (see section 2.2.1). Both CPE
and ACS SHOULD take appropriate steps to prevent unauthorized access to the password, or list of
passwords in the case of an ACS.

3.5 Use of SOAP
The CPE WAN Management Protocol defines SOAP 1.1 [8] as the encoding syntax to transport the RPC
method calls and responses defined in Appendix A.

The following describes the mapping of RPC methods to SOAP encoding:

• The encoding must use the standard SOAP 1.1 envelope and serialization namespaces:

• Envelope namespace identifier "http://schemas.xmlsoap.org/soap/envelope/"

• Serialization namespace identifier "http://schemas.xmlsoap.org/soap/encoding/"

 Page 18 of 109

CPE WAN Management Protocol TR-069

• All elements and attributes defined as part of this version of the CPE WAN Management Protocol are
associated with the following namespace identifier:

• “urn:dslforum-org:cwmp-1-0”

• The data types used in Appendix A correspond directly to the data types defined in the SOAP 1.1
serialization namespace. (In general, the types used in Appendix A are restricted subsets of the
corresponding SOAP types.)

• For an array argument, the given argument name corresponds to the name of the overall array element.
No names are given for the individual member elements, so these should be named by their type. For
example, an argument named ParameterList, which is an array of ParameterValueStruct structures,
would be encoded as:

<ParameterList soap:arrayType="cwmp:ParameterValueStruct[2]">
 <ParameterValueStruct>
 <name>Parameter1</name>
 <value xsi:type="someType">1234</value>
 </ParameterValueStruct>
 <ParameterValueStruct>
 <name>Parameter2</name>
 <value xsi:type="someType">5678</value>
 </ParameterValueStruct>
</ParameterList>

• Regarding the SOAP specification for encoding RPC methods (section 7 of [8]), for each method

defined in Appendix A, each argument listed in the method call represents an [in] parameter, while
each argument listed in the method response represents an [out] parameter. There are no [in/out]
parameters used.

• The RPC methods defined use the standard SOAP naming convention whereby the response message
corresponding to a given method is named by adding the “Response” prefix to the name of the method.

• A fault response MUST make use of the SOAP Fault element using the following conventions:

• The SOAP faultcode element MUST indicate the source of the fault, either Client or Server, as
appropriate for the particular fault. In this usage, Client represents the originator of the SOAP
request, and Server represents the SOAP responder.

• The SOAP faultstring sub-element MUST contain the string “CWMP fault”.

• The SOAP detail element MUST contain a Fault structure defined in the “urn:dslforum-
org:cwmp-1-0” namespace. This structure contains the following elements:

o A FaultCode element that contains a single numeric fault code as defined in Appendix A.

o A FaultString element that contains a human readable description of the fault.

o A SetParameterValuesFault element, to be used only in an error response to the
SetParameterValues method, that contains a list of one or more structures indicating the
specific fault associated with each parameter in error. This structure contains the following
elements:

o A ParameterName element that contains the full path name of the parameter in error.

o A FaultCode element that contains a single numeric fault code as defined in Appendix
A that indicates the fault associated with the particular parameter in error.

o A FaultString element that contains a human readable description of the fault for the
particular parameter in error.

The following is an XML-schema segment that defines the Fault structure:

<xs:element Name="Fault">
 <xs:complexType>

 Page 19 of 109

CPE WAN Management Protocol TR-069

 <xs:sequence>
 <xs:element Name="FaultCode" Type="unsignedInt"/>
 <xs:element Name="FaultString" Type="string" minOccurs="0"/>
 <xs:element Name="SetParameterValuesFault" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element Name="ParameterName" Type="string"/>
 <xs:element Name="FaultCode" Type="unsignedInt"/>
 <xs:element Name="FaultString" Type="string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
</xs:element>

Below is an example envelope containing a fault response:

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
 <soap:Header>
 <cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>
 </soap:Header>
 <soap:Body>
 <soap:Fault>
 <faultcode>Client</faultcode>
 <faultstring>CWMP fault</faultstring>
 <detail>
 <cwmp:Fault>
 <FaultCode>9000</FaultCode>
 <FaultString>Upload method not supported</FaultString>
 </cwmp:Fault>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

Below is an example envelope containing a fault response for a SetParameterValues method call:

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
 <soap:Header>
 <cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>
 </soap:Header>
 <soap:Body>
 <soap:Fault>
 <faultcode>Client</faultcode>
 <faultstring>CWMP fault</faultstring>
 <detail>
 <cwmp:Fault>
 <FaultCode>9003</FaultCode>
 <FaultString>Invalid arguments</FaultString>
 <SetParameterValuesFault>
 <ParameterName>
 InternetGatewayDevice.Time.LocalTimeZone
 </ParameterName>
 <FaultCode>9012</FaultCode>
 <FaultString>Not a valid time zone value</FaultString>
 </SetParameterValuesFault>
 <SetParameterValuesFault>
 <ParameterName>
 InternetGatewayDevice.Time.LocalTimeZoneName
 </ParameterName>
 <FaultCode>9012</FaultCode>
 <FaultString>String too long</FaultString>
 </SetParameterValuesFault>

 Page 20 of 109

CPE WAN Management Protocol TR-069

 </cwmp:Fault>
 </detail>
 </soap:Fault>
 </soap:Body>
</soap:Envelope>

• For future extensibility, when processing a received envelope, both ACS and CPE MUST ignore: (a)

any unknown XML elements3 and their sub elements or content, (b) any unknown XML attributes and
their values, (c) any embedded XML comments, and (d) any XML processing instructions.

The CPE WAN Management Protocol defines a series of SOAP Header elements as specified in Table 3.

Table 3 – SOAP Header Elements

Tag Name Description
ID This header element MAY be used to associate SOAP requests and responses using a unique

identifier for each request, for which the corresponding response contains the matching identifier.
The value of the identifier is an arbitrary string and is set at the discretion of the requester.
If used in a SOAP request, the ID header MUST appear in the matching response (whether the
response is a success or failure).
Because support for this header is required, the mustUnderstand attribute MUST be set to “1” (true)
for this header.

HoldRequests This header MAY be included in envelopes sent from an ACS to a CPE to regulate transmission of
requests from the CPE. This header MUST NOT appear in envelopes sent from a CPE to an ACS.
This tag has Boolean values of “0” (false) or “1” (true). If the tag is not present, this is interpreted as
equivalent to a “0” (false).
The behavior of the CPE on reception of this header is defined in section 3.7.1.3. Support in the CPE
for this header is REQUIRED.
If an ACS must update the flow-control state but has no other message to send, it may send an
envelope containing only this header and an empty body.
Because support for this header is required, the mustUnderstand attribute MUST be set to “1” (true)
for this header.

NoMoreRequests This header MAY be included in envelopes sent by an ACS or a CPE to explicitly indicate to the
recipient whether or not it will not be sending any more requests during the remainder of the session.
This tag has Boolean values of “0” (false) or “1” (true). If the tag is not present, this is interpreted as
equivalent to a “0” (false). This may be set to true in an envelope that contains the final request or in
any subsequent envelope. Once set to true during a session, it SHOULD be set to true in the
remaining envelopes sent, and the sender MUST NOT send additional request messages during that
session.
The behavior of the CPE on reception of this header is defined in section 3.7.1.4. Support in the CPE
for transmission or reception of this header is OPTIONAL.
The behavior of the ACS on reception of this header is defined in section 3.7.2.4. Support in the ACS
for transmission or reception of this header is OPTIONAL.
Because support for this header is optional, the mustUnderstand attribute MUST be either absent or
set to “0” (false) for this header.

Below is an example of a message showing the use of all of the defined headers:

<soap:Envelope
 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"
 soap:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:cwmp="urn:dslforum-org:cwmp-1-0">
 <soap:Header>
 <cwmp:ID soap:mustUnderstand="1">1234</cwmp:ID>
 <cwmp:HoldRequests soap:mustUnderstand="1">0</cwmp:HoldRequests>
 <cwmp:NoMoreRequests>1</cwmp:NoMoreRequests>
 </soap:Header>

3 With the exception that reception of an unknown SOAP action should result in a fault response indicating

Method Not Supported (see Appendix A).

 Page 21 of 109

CPE WAN Management Protocol TR-069

 <soap:Body>
 <cwmp:Action>
 <argument>value</argument>
 </cwmp:Action>
 </soap:Body>
</soap:Envelope>

3.6 RPC Support Requirements
Table 4 provides a summary of all methods, and indicates the conditions under which implementation of
each RPC method defined in Appendix A is REQUIRED or OPTIONAL.

Table 4 – RPC message requirements

Method name CPE requirement Server requirement
CPE methods Responding Calling

GetRPCMethods Required Optional

SetParameterValues Required Required

GetParameterValues Required Required

GetParameterNames Required Required

SetParameterAttributes Required Optional

GetParameterAttributes Required Optional

AddObject Required Optional

DeleteObject Required Optional

Reboot Required Optional

Download Required4 Required

Upload Optional Optional

FactoryReset Optional Optional

GetQueuedTransfers Optional Optional

ScheduleInform Optional Optional

SetVouchers Optional5 Optional

GetOptions Optional Optional

Server methods Calling Responding

GetRPCMethods Optional Required

Inform Required Required

TransferComplete Required6 Required7

RequestDownload Optional Optional

Kicked Optional Optional

3.7 Transaction Session Procedures
All transaction sessions MUST begin with an Inform message from the CPE contained in the initial HTTP
post. This serves to initiate the set of transactions and communicate the limitations of the CPE with regard
to message encoding.

4 Required only if file downloads of any type are supported.
5 If the voucher mechanism is supported, both the SetVouchers and GetOptions methods are required.
6 Required only if file downloads or uploads of any type are supported.
7 Required only if the ACS supports initiation of file downloads or uploads.

 Page 22 of 109

CPE WAN Management Protocol TR-069

The session ceases when both the ACS and CPE have no more requests to send, no responses remain due
from either the ACS or the CPE. At such time, the CPE may close the connection.

No more than one transaction session between a CPE and its associated ACS may exist at a time.

Note – a transaction session is intended to persist only as long as there are messages to be
transferred in either direction. A session and its associated TCP connection are not intended to
be held open after a specific exchange of information completes.

3.7.1 CPE Operation

3.7.1.1 Session Initiation
The CPE will initiate a transaction session to the ACS as a result of the conditions listed in section 3.2.1.
Once the connection to the ACS is successfully established, the CPE initiates a session by sending an initial
Inform request to the ACS. This indicates to the ACS the current status of the CPE and that the CPE is
ready to accept requests from the ACS.

In this initial HTTP post carrying the Inform request, only one SOAP envelope is allowed. The
MaxEnvelopes argument in the Inform response indicates the maximum number of envelopes that may be
carried by each subsequent HTTP post.

The CPE SHOULD initiate a session only when it has locked the Parameters accessible through this
interface to ensure they cannot be changed via any other mechanism. The CPE SHOULD maintain this
lock until the session is terminated.

3.7.1.2 Incoming Requests
On reception of SOAP requests from the ACS, the CPE MUST respond to each request in the order they
were received, where order is defined as described in section 3.4.1. This definition of order places no
constraint on whether multiple responses are sent in a single HTTP post (if the ACS can accept more than
one envelope), or distributed over multiple HTTP posts.

To prevent deadlocks, the CPE MUST NOT hold off responding to an ACS request to wait for a response
from the ACS to an earlier CPE request.

3.7.1.3 Outgoing Requests
When the CPE has request messages to send (after the initial Inform request), it may send these in any
order with respect to responses being sent by the CPE to the ACS. That is, the CPE may insert one or more
requests at any point in the sequence of envelopes it transmits to the ACS. There is no specified limit to the
number of requests a CPE may send prior to receiving responses (the number of outstanding requests). A
CPE MAY incorporate a locally specified limit if desired.

If the CPE receives an envelope from the ACS (either request or response) with the HoldRequests header
equal to true (see section 3.5), the CPE MUST NOT send any requests in subsequent HTTP posts. The
CPE may restart sending envelopes only when it subsequently receives an envelope with the HoldRequests
header equal to false (or equivalently, no HoldRequests header). In determining whether it may send a
request, the CPE MUST examine all envelopes received through the end of the most recent HTTP
response. Because of the envelope order defined in section 3.4.1, only the last envelope in an HTTP
response determines whether requests are allowed on the next HTTP post. If the CPE receives an empty
HTTP response from the ACS, this may be interpreted as HoldRequests equal false.

If there are one or more outstanding requests from the ACS, or if the CPE has one or more outstanding
requests and HoldRequests is false, then the CPE MUST send at least one request or response in any HTTP
post sent to the ACS. An empty HTTP post MUST be sent if the ACS has no requests or responses
outstanding. Table 5 lists the complete set of constraints on what a CPE MUST send while a session is in
progress.

 Page 23 of 109

CPE WAN Management Protocol TR-069

Table 5 – CPE Message Transmission Constraints

 HoldRequests ACS requests outstanding No ACS requests outstanding
False One or more responses and/or

requests
One or more requests CPE requests pending

True One or more responses Empty HTTP post

No CPE requests pending - One or more responses Empty HTTP post

3.7.1.4 Session Termination
The CPE MUST terminate the transaction session when all of the following conditions are met:

1) The ACS has no further requests to send the CPE. The CPE concludes this if either one of the
following is true:

a) The most recent HTTP response from the ACS contains no envelopes.

b) The most recent envelope received from the ACS (in the order defined in section 3.4.1)
includes a NoMoreRequests header equal true (see section 3.5). Use of this header by a CPE
is OPTIONAL.

2) The CPE has no further requests to send to the ACS.

3) The CPE has received all outstanding response messages from the ACS.

4) The CPE has sent all outstanding response messages to the ACS resulting from prior requests.

The CPE MUST also terminate a session if it has received no HTTP response from an ACS for a locally
determined time period of not less than 30 seconds.

If the above conditions are not met, the CPE MUST continue the session.

If one or more messages exchanged during a session results in the CPE needing to reboot to complete the
requested operation, the CPE MUST wait until after the session has cleanly terminated based on the above
criteria before performing the reboot.

If the session terminates unexpectedly, the CPE SHOULD attempt to establish a new session, starting the
session establishment procedure from the beginning. The CPE MAY place locally specified limits on the
number of times it attempts to reestablish a session in this case.

3.7.2 ACS Operation

3.7.2.1 Session Initiation
Upon receiving the initial Inform request from the CPE, the ACS MUST respond with an Inform response.
The ACS may follow this with series of requests sent to the CPE.

The MaxEnvelopes argument in the Inform request indicates the maximum number of envelopes that may
be carried by each HTTP response sent by the ACS to the CPE. If the CPE can accept more than one
envelope, the initial HTTP response carrying the Inform response may also carry additional requests up to
the total limit imposed by MaxEnvelopes.

3.7.2.2 Incoming Requests
On reception of SOAP requests from the CPE, the ACS MUST respond to each request in the order they
were received, where order is defined as described in section 3.4.1. This definition of order places no
constraint on whether multiple responses are sent in a single HTTP response (if the CPE can accept more
than one envelope), or distributed over multiple HTTP responses.

To prevent deadlocks, the ACS MUST NOT hold off responding to a CPE request to wait for a response
from the CPE to an earlier ACS request.

 Page 24 of 109

CPE WAN Management Protocol TR-069

If the ACS wishes to prevent the CPE sending requests during some portion of the session, it may do so by
setting the HoldRequests header to true in each envelope transmitted to the CPE until the ACS again wishes
to allow requests from the CPE. The ACS MUST allow CPE requests before completion of a session (this
may be done either explicitly via the HoldRequests header or implicitly by sending an empty HTTP
response).

3.7.2.3 Outgoing Requests
When the ACS has request messages to send, it may send these in any order with respect to responses being
sent by the ACS to the CPE. That is, the ACS may insert one or more requests at any point in the sequence
of envelopes it transmits to the ACS (after the Inform response). There is no specified limit to the number
of requests an ACS may send prior to receiving responses (the number of outstanding requests). An ACS
MAY incorporate a locally specified limit if desired.

If the ACS has one or more requests remaining to be sent and/or one or more responses outstanding from
earlier requests from the CPE, the ACS MUST send at least one request or response in any HTTP response
sent back to the CPE. An empty HTTP response is only allowed if the ACS has no more requests or
responses outstanding.

3.7.2.4 Session Termination
Since the CPE is driving the HTTP connection to the ACS, only the CPE is responsible for connection
initiation and teardown.

The ACS may consider the session terminated when all of the following conditions are met:

1) The CPE has no further requests to send the ACS. The ACS concludes this if either one of the
following is true:

a) The most recent HTTP post from the CPE contains no envelopes.

b) The most recent envelope received from the CPE (in the order defined in section 3.4.1)
includes a NoMoreRequests header equal true (see section 3.5). Use of this header by an
ACS is OPTIONAL.

2) The ACS has no further requests to send the CPE.

3) The CPE has sent all outstanding response messages to the ACS resulting from prior requests.

4) The ACS has received all outstanding response messages from the CPE.

If the above criteria have not all been met, but the ACS has not received an HTTP post from a given CPE
within a locally defined timeout of not less than 30 seconds, it may consider the session terminated. In this
case, the ACS MAY attempt to reestablish a session by performing a Connection Request (see section
3.2.2).

 Page 25 of 109

CPE WAN Management Protocol TR-069

3.7.3 Transaction Examples
In the example shown in Figure 3, the ACS first reads a set of parameter values, and based on the result,
sets some parameter values. In the example show, MaxEnvelopes from both the CPE and ACS equal one,
so there is no pipelining of requests from the ACS, nor multiple responses per HTTP post from the CPE.

Figure 3 – Example with MaxEnvelopes from both the CPE and ACS equal one

CPE ACS
Open connection

SSL initiation

HTTP post

HTTP response

Inform request

Inform response

HTTP post
GetParameterValues response

HTTP response
SetParameterValues request

HTTP post
SetParameterValues response

Close connection

HTTP response

HTTP post

HTTP response
GetParameterValues request

 Page 26 of 109

CPE WAN Management Protocol TR-069

The example in Figure 4 shows a scenario where MaxEnvelopes from both the CPE and ACS are equal to
three, allowing the use of message pipelining in both directions. In this example, some additional requests
from the ACS are shown.

Figure 4 – Example with MaxEnvelopes from both the CPE and ACS equal three

CPE ACS
Open connection

SSL initiation

HTTP post

HTTP response

Inform request

Inform response
GetParameterValues request

ScheduleInform request

HTTP post
GetParameterValues response

ScheduleInform response

HTTP response
SetParameterValues request

AddObject request
AddObject request

HTTP post
SetParameterValues response

AddObject response
AddObject response

Close connection

HTTP response

 Page 27 of 109

CPE WAN Management Protocol TR-069

Normative References
The following documents are referenced by this specification. Where the protocol defined in this
specification depends on a referenced document, support for all required components of the referenced
document is implied unless otherwise specified.

The following references are associated with document conventions or context for this specification, but are
not associated with requirements of the CPE WAN Management Protocol itself.

[1] RFC 2119, Key words for use in RFCs to Indicate Requirement Levels,
http://www.ietf.org/rfc/rfc2119.txt

[2] TR-046, Auto-Configuration Architecture & Framework, DSL Forum Technical Report

[3] TR-062, Auto-Configuration for the Connection Between the DSL Broadband Network Termination
(B-NT) and the Network using ATM, DSL Forum Technical Report

[4] TR-044, Auto-Configuration for Basic Internet (IP-based) Services, DSL Forum Technical Report

The following references are associated with required components of the CPE WAN Management
Protocol.

[5] RFC 2616, Hypertext Transfer Protocol -- HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt

[6] RFC 2617, HTTP Authentication: Basic and Digest Access Authentication,
http://www.ietf.org/rfc/rfc2617.txt

[7] RFC 2965, HTTP State Management Mechanism, http://www.ietf.org/rfc/rfc2965.txt

[8] Simple Object Access Protocol (SOAP) 1.1, http://www.w3.org/TR/2000/NOTE-SOAP-20000508

[9] Organizationally Unique Identifiers (OUIs), http://standards.ieee.org/faqs/OUI.html

The following references are associated with optional or recommended components of the CPE WAN
Management Protocol.

[10] The SSL Protocol, Version 3.0, http://www.netscape.com/eng/ssl3/draft302.txt

[11] RFC 2246, The TLS Protocol, Version 1.0, http://www.ietf.org/rfc/rfc2246.txt

[12] RFC 2132, DHCP Options and BOOTP Vendor Extensions, http://www.ietf.org/rfc/rfc2132.txt

[13] XML-Signature Syntax and Processing, http://www.w3.org/2000/09/xmldsig

[14] PKCS #7, Cryptographic Message Syntax Standard, http://www.rsasecurity.com/rsalabs/pkcs/pkcs-
7/index.html or http://www.ietf.org/rfc/rfc2315.txt

 Page 28 of 109

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2617.txt
http://www.ietf.org/rfc/rfc2965.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://standards.ieee.org/faqs/OUI.html
http://www.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc2132.txt
http://www.w3.org/2000/09/xmldsig
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html
http://www.ietf.org/rfc/rfc2315.txt

CPE WAN Management Protocol TR-069

Appendix A. RPC Methods

A.1 Introduction
In the CPE WAN Management Protocol, a remote procedure call mechanism is used for bi-directional
communication between a CPE device and an Auto-configuration Server (ACS). This appendix specifies
version 1 of the specific procedure calls (methods) that are defined. This includes both methods initiated
by an ACS and sent to a CPE, as well as methods initiated by a CPE and sent to an ACS.

This specification is intended to be independent of the syntax used to encode the defined RPC methods.
The particular encoding syntax to be used in the context of the CPE WAN Management Protocol is defined
in section 3.5.

It is assumed that the lower layers that transport RPC messages provide most aspects of security, including
mutual authentication between the CPE and ACS, confidentiality, and data integrity.

A.2 RPC Method Usage

A.2.1 Data Types
The RPC methods defined in this specification make use of a limited subset of the default SOAP data types
[8]. The complete set of types utilized in this specification along with the notation used to represent these
types is listed in Table 6.

Table 6 – Data types

Type Description
string For strings listed in this specification, a maximum allowed length may be listed using the form string(N),

where N is the maximum string length in characters.
For all strings a maximum length is either explicitly indicated or implied by the size of the elements
composing the string. For strings in which the content is an enumeration, the longest enumerated value
determines the maximum length. If a string does not have an explicitly indicated maximum length or is
not an enumeration, the default maximum is 16 characters. Action arguments containing strings longer
than the specified maximum MAY result in an “Invalid arguments” error response.

int Integer in the range –2147483648 to +2147483647, inclusive.
For some int types listed, a value range is given using the form int[Min:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit.

unsignedInt Unsigned integer in the range 0 to 4294967295, inclusive.
For some unsignedInt types listed, a value range is given using the form unsignedInt[Min:Max], where
the Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit.

boolean Boolean, where 1 = true and 0 = false.

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.
All times are expressed in UTC (Universal Coordinated Time) unless explicitly declared otherwise.
If absolute time is not available to the CPE, it SHOULD instead indicate time since boot. For example,
2 days, 3 hours, 4 minutes and 5 seconds since boot would be expressed as 0000-00-02T03:04:05.

 Page 29 of 109

CPE WAN Management Protocol TR-069

Type Description
base64 Base64 encoded binary.

A maximum allowed length may be listed using the form base64(N), where N is the maximum length in
characters after Base64 encoding.

any An element containing any of the types listed in this table.
Following the SOAP specification [8], elements specified as being of this type MUST include a type
attribute to indicate the actual type of the element. For example:

<Parameter>
 <Name>InternetGatewayDevice.ProvisioningCode</Name>
 <Value xsi:type="xsd:string">code12345</Value>
</Parameter>

The namespaces xsi and xsd used above are as defined in [8].

The methods used in this specification also make use of structures and arrays (in some cases containing
mixed types). Array elements are indicated with square brackets after the data type. If specified, the
maximum length of the array would be indicated within the brackets. If the maximum length is not
specified, unless otherwise indicated, there is no fixed requirement on the number of elements the recipient
must accommodate. A request with an array too large for the recipient to accommodate should result in the
“Resources exceeded” fault code.

A.2.2 Other Requirements
All methods must be called using the exact number of arguments specified in this document. Methods
called with either missing arguments or extra arguments will generate an error response. Argument order
must be as specified in this document.

Future versions of this specification should not redefine the RPC methods defined in this appendix. Any
changes needed in a future version should result only in new RPC methods with distinct names being
defined.

A.3 Baseline RPC Messages

A.3.1 Generic Methods
The methods listed in this section are required to be supported on both CPE devices and Servers. Either a
CPE or Server may call these methods.

A.3.1.1 GetRPCMethods
This method may be used by a CPE or Server to discover the set of methods supported by the Server or
CPE it is in communication with. This list may include both standard methods (those defined in this
specification or a subsequent version) and vendor-specific methods. The receiver of the response MUST
ignore any unrecognized methods.

Vendor-specific methods MUST be in the form X_<VENDOR>_MethodName, where <VENDOR> is a
unique vendor identifier, which may be either an OUI or a domain name. An OUI is an organizationally
unique identifier as defined in [9], which MUST formatted as a 6 hexadecimal-digit OUI (organizationally
unique identifier), with all upper-case letters and any leading zeros included. A domain name MUST be
upper case with each dot (“.”) replaced with a hyphen or underscore. Examples: X_00D09E_MyMethod,
X_ACME_COM_MyMethod.

The calling arguments for this method are defined in Table 7. The arguments in the response are defined in
Table 8.

 Page 30 of 109

CPE WAN Management Protocol TR-069

Table 7 – GetRPCMethods arguments

Argument Type Description
- void This method has no calling arguments.

Table 8 – GetRPCMethodsResponse arguments

Argument Type Description
MethodList string(64)[] Array of strings containing the names of each of the RPC methods the recipient supports.

For example, a CPE implementing only the baseline methods defined in this version of
the specification would return the following list when requested by a Server:

"GetRPCMethods"
"SetParameterValues"
"GetParameterValues"
"GetParameterNames"
“SetParameterAttributes”
“GetParameterAttributes”
“AddObject”
“DeleteObject”
“Reboot”
“Download”

The following fault codes are defined for this method for response from a CPE: 9001, 9002.

The following fault codes are defined for this method for response from an ACS: 8001, 8002, 8005.

A.3.2 CPE Methods
The methods listed in this section are defined to be supported on a CPE device. Only a Server can call
these methods.

A.3.2.1 SetParameterValues
This method may be used by a Server to modify the value of one or more CPE Parameters. The calling
arguments for this method are defined in Table 9. The arguments in the response are defined in Table 10.

Table 9 – SetParameterValues arguments

Argument Type Description
ParameterList ParameterValueStruct[] Array of name-value pairs as specified in Table 11. For each name-

value pair, the CPE is instructed to set the Parameter specified by the
name to the corresponding value.

ParameterKey string(32) The value to set the ParameterKey parameter. This MAY be used by
the server to identify Parameter updates, or left empty.

Table 10 – SetParameterValuesResponse arguments

Argument Type Description
Status int[0:1] A successful response to this method returns an integer enumeration defined as follows:

0 = Parameter changes have been validated and applied.
1 = Parameter changes have been validated and committed, but not yet applied (for example, if

a reboot is required before the new values are applied).

 Page 31 of 109

CPE WAN Management Protocol TR-069

On successful receipt of a SetParameterValues RPC, the CPE MUST apply the changes to each of the
specified Parameters immediately and atomically. The order of Parameters listed in the ParameterList has
no significance—the application of value changes to the CPE MUST be independent from the order in
which they are listed. A successful response to this RPC SHOULD occur only after the new Parameter
values have been successfully applied. If the CPE requires a reboot before applying the Parameter values,
the CPE MUST reply before such a reboot, and thus before the Parameter values have been applied. In this
case, the reply MUST come only after all validation of the request has been completed and the new values
have been appropriately saved such that they will definitely be applied immediately following the reboot.

The ParameterValueStruct structure is defined in Table 11.

Table 11 – ParameterValueStruct definition

Name Type Description
Name string(256) This is the name of a Parameter.

Value any This is the value the Parameter is to be set.

If there is a fault due to one or more parameters in error, the fault response for this method MUST include a
SetParameterValuesFault element for each parameter in error. In this case, the primary fault code
indicated for the overall fault response MUST be Invalid Arguments (9003).

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005, 9006, 9007, 9008.

A.3.2.2 GetParameterValues
This method may be used by a Server to obtain the value of one or more CPE Parameters. The calling
arguments for this method are defined in Table 12. The arguments in the response are defined in Table 13.

Table 12 – GetParameterValues arguments

Argument Type Description
ParameterNames string(256)[] Array of strings, each representing the name of a requested Parameter.

If a Parameter name argument is given as a partial path name, the request is to
be interpreted as a request to return all of the Parameters in the branch of the
naming hierarchy that shares the same prefix as the argument. A partial path
name MUST end with a “.” (dot) after the last node name in the hierarchy. An
empty string indicates the top of the name hierarchy.
Below is an example of a full Parameter name:

InternetGatewayDevice.DeviceInfo.SerialNumber
Below is an example of a partial path name:

InternetGatewayDevice.DeviceInfo.

Table 13 – GetParameterValuesResponse arguments

Argument Type Description
ParameterList ParameterValueStruct[] Array of name-value pairs, as specified in Table 11, containing the

name and value for each requested Parameter.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005. If the fault is caused
by an invalid parameter name, the Invalid Parameter Name fault code (9005) MUST be used instead of the
more general Invalid Arguments fault code (9003).

 Page 32 of 109

CPE WAN Management Protocol TR-069

A.3.2.3 GetParameterNames
This method may be used by a Server to discover the Parameters accessible on a particular CPE. The
calling arguments for this method are defined in Table 14. The arguments in the response are defined in
Table 15.

Table 14 – GetParameterNames arguments

Argument Type Description
ParameterPath string(256) A string containing either a complete Parameter name, or a partial path name

representing a subset of the name hierarchy. An empty string indicates the top of
the name hierarchy. A partial path name MUST end with a “.” (dot) after the last
node name in the hierarchy.
Below is an example of a full Parameter name:

InternetGatewayDevice.DeviceInfo.SerialNumber
Below is an example of a partial path name:

InternetGatewayDevice.DeviceInfo.

NextLevel boolean If false, the response lists the full path name of all Parameters whose name begins
with the string given by the ParameterPath argument.

If true, the response lists only the partial path one level below the specified
ParameterPath. For example, if ParameterPath is “InternetGatewayDevice.LAN-
Device.”, the response may list “InternetGatewayDevice.LANDevice.1.” and
“InternetGatewayDevice.LANDevice.2.” without listing all of the Parameters below
this level.

Table 15 – GetParameterNamesResponse arguments

Argument Type Description
ParameterList ParameterInfoStruct[] Array of structures, each containing the name and other information for a

Parameter, as defined in Table 16. When NextLevel is false, this method
returns Parameter information for all accessible Parameters whose name
begins with the string given by the ParameterPath argument. If the
ParameterPath argument is an empty string, names of all Parameters
accessible on the particular CPE are returned. When NextLevel is true,
this list contains all partial paths one level below the path specified in
ParameterPath.

Table 16 – ParameterInfoStruct definition

Name Type Description
Name string(256) This is the name of a Parameter or partial path name.

Writable boolean Whether or not the Parameter value can be overwritten
using the SetParameterValues method.
If Name is a partial path due to NextLevel being true, this
indicates whether AddObject and DeleteObject can be
used at this level to remove this instance or add other
instances.

The following fault codes are defined for this method: 9001, 9002, 9003, 9005. If the fault is caused by an
invalid parameter name, the Invalid Parameter Name fault code (9005) MUST be used instead of the more
general Invalid Arguments fault code (9003).

A.3.2.4 SetParameterAttributes
This method may be used by a Server to modify attributes associated with one or more CPE Parameter.
The calling arguments for this method are defined in Table 17. The arguments in the response are defined
in Table 18.

 Page 33 of 109

CPE WAN Management Protocol TR-069

Table 17 – SetParameterAttributes arguments

Argument Type Description
ParameterList SetParameterAttributesStruct[] List of changes to be made to the attributes for a set of

Parameters. Each entry in this array is a SetParameter-
AttributesStruct as defined in Table 19.

Table 18 – SetParameterAttributesResponse arguments

Argument Type Description
- void This method response has no arguments.

Table 19 – SetParameterAttributesStruct definition

Name Type Description
Name string(256) This is the name of a Parameter to apply the new

attributes. Alternatively, this may be a partial path
name, indicating that the new attributes are to be
applied to all Parameters below this point in the
naming hierarchy. A partial path name MUST end
with a “.” (dot) after the last node name in the
hierarchy. An empty string indicates the top of the
name hierarchy.
Below is an example of a full Parameter name:

InternetGatewayDevice.DeviceInfo.SerialNumber
Below is an example of a partial path name:

InternetGatewayDevice.DeviceInfo.

NotificationChange boolean If true, the value of Notification replaces the current
notification setting for this parameter or group of
parameters. If false, no change is made to the
notification setting.

Notification int[0:2] Indicates whether the CPE should include changed
values of the specified parameter(s) in the Inform
message, and whether the CPE must initiate a
session to the ACS when the specified parameter(s)
change in value. The following values are defined:
0 = Notification off. The CPE need not inform the

ACS of a change to the specified parameter(s).
1 = Passive notification. Whenever the specified

parameter value changes, the CPE MUST
include the new value in the ParameterList in the
Inform message that is sent the next time a
session is established to the ACS.

2 = Active notification. Whenever the specified
parameter value changes, the CPE MUST initiate
a session to the ACS, and include the new value
in the ParameterList in the associated Inform
message.

Whenever a parameter change is sent in the Inform
message due to a non-zero Notification setting, the
Event code "4 VALUE CHANGE" MUST be included
in the list of Events.
The CPE may return a “notification request rejected”
error if an attempt is made to set notification on a
parameter deemed inappropriate (e.g., a continuously
varying statistic).

AccessListChange boolean If true, the value of AccessList replaces the current
access list for this parameter or group of parameters.
If false, no change is made to the access list.

 Page 34 of 109

CPE WAN Management Protocol TR-069

Name Type Description
AccessList string(64)[] Array of zero or more entities for which write access

to the specified Parameter(s) is granted. If there are
no entries, access is only allowed from an ACS. At
present, only one type of entity is defined that can be
included in this list:

“Subscriber” Indicates write access by a
device controlled by the
subscriber on the LAN, such as
via the LAN-Side DSL CPE
Configuration protocol or via
UPnP.

By default, prior to any changes to the access list by
an ACS, access SHOULD be granted to all entities
specified above.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005, 9009. If the fault is
caused by an invalid parameter name, the Invalid Parameter Name fault code (9005) MUST be used instead
of the more general Invalid Arguments fault code (9003).

A.3.2.5 GetParameterAttributes
This method may be used by a Server to read the attributes associated with one or more CPE Parameter.
The calling arguments for this method are defined in Table 20. The arguments in the response are defined
in Table 21.

Table 20 – GetParameterAttributes arguments

Argument Type Description
ParameterNames string(256)[] Array of strings, each representing the name of a requested Parameter.

If a Parameter name argument is given as a partial path name, the request is to
be interpreted as a request to return all of the Parameters in the branch of the
naming hierarchy that shares the same prefix as the argument. A partial path
name MUST end with a “.” (dot) after the last node name in the hierarchy. An
empty string indicates the top of the name hierarchy.
Below is an example of a full Parameter name:

InternetGatewayDevice.DeviceInfo.SerialNumber
Below is an example of a partial path name:

InternetGatewayDevice.DeviceInfo.

Table 21 – GetParameterAttributesResponse arguments

Argument Type Description
ParameterList ParameterAttributeStruct[] List of access control information for the specified set of Parameters.

Each entry in this array is a ParameterAccessStruct as defined in
Table 22.

Table 22 – ParameterAttributesStruct definition

Name Type Description
Name string(256) This is the name of a Parameter to which the

attributes are given.

 Page 35 of 109

CPE WAN Management Protocol TR-069

Name Type Description
Notification int[0:2] Indicates whether the CPE should include changed

values of the specified parameter(s) in the Inform
message, and whether the CPE must initiate a
session to the ACS when the specified parameter(s)
change in value. The following values are defined:
0 = Notification off. The CPE need not inform the

ACS of a change to the specified parameter(s).
1 = Passive notification. Whenever the specified

parameter value changes, the CPE MUST
include the new value in the ParameterList in
the Inform message that is sent the next time a
session is established to the ACS.

2 = Active notification. Whenever the specified
parameter value changes, the CPE MUST
initiate a session to the ACS, and include the
new value in the ParameterList in the
associated Inform message.

AccessList string(64)[] Array of zero or more entities for which write access
to the specified Parameter(s) is granted. If there
are no entries, access is only allowed from an ACS.
At present, only one type of entity is defined that
can be included in this list:

“Subscriber” Indicates write access by a
device controlled by the
subscriber on the LAN, such as
via the LAN-Side DSL CPE
Configuration protocol or via
UPnP.

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005. If the fault is caused
by an invalid parameter name, the Invalid Parameter Name fault code (9005) MUST be used instead of the
more general Invalid Arguments fault code (9003).

A.3.2.6 AddObject
This method may be used by the Server to create a new instance of a multi-instance object—a collection of
Parameters and/or other objects for which multiple instances are defined. The method call takes as an
argument the path name of the collection of objects for which a new instance is to be created. For example:

Top.Group.Object.

This path name does not include an instance number for the object to be created. That instance number is
assigned by the CPE and returned in the response. Once assigned the instance number of an object cannot
be changed and persists until the object is deleted using the DeleteObject method. After creation,
Parameters or sub-objects within the object are refereced by the path name appended with the instance
number. For example, if the AddObject method returned an instance number of 2, a Parameter within this
instance may then be referred to by the path:

Top.Group.Object.2.Parameter

On creation of an object using this method, the Parameters contained within the object are set to their
default values and the associated attributes are set to the following:

• Notification is set to zero (notification off)

• AccessList includes all defined entities

For an Internet Gateway Device, the specific set of objects for which this method may be used is listed in
Appendix B. The calling arguments for this method are defined in Table 23. The arguments in the
response are defined in Table 24.

 Page 36 of 109

CPE WAN Management Protocol TR-069

Table 23 – AddObject arguments

Argument Type Description
ObjectName string(256) The path name of the collection of objects for which a new instance is to be created.

The path name MUST end with a “.” (dot) after the last node in the hierarchical name
of the object.

ParameterKey string(32) The value to set the ParameterKey parameter. The value of this argument is left to the
discretion of the server, and may be left empty.

Table 24 – AddObjectResponse arguments

Argument Type Description
InstanceNumber UnsignedInt[1:] The instance number of the newly created object. Once created, a Parameter

or sub-object within this object may be later referenced by using this instance
number in the path name. The instance number assigned by the CPE is
arbitrary and instance numbers assigned by sequential calls to AddObject
need not be consecutive.
The CPE SHOULD NOT assign an instance number that has been used for a
previously deleted object instance. The CPE SHOULD exhaust the full space
of integer values for a given object before re-using instance numbers.

Status int[0:1] A successful response to this method returns an integer enumeration defined
as follows:
0 = The object has been created.
1 = The object creation has been validated and committed, but not yet applied

(for example, if a reboot is required before the new object can be applied).

The following fault codes are defined for this method: 9001, 9002, 9003, 9004, 9005.

A.3.2.7 DeleteObject
This method is used to remove a particular instance of an object. This method call takes as an argument the
path name of the object instance including the instance number. For example:

Top.Group.Object.2.

If this method call is successful, the specified instance of this object is subsequently unavailable for access
and the CPE may discard the state previously associated with any Parameter or sub-object contained within
this instance.

When an object instance is deleted, the instance numbers associated with any other instances of the same
collection of objects remain unchanged. Thus, the instance numbers of object instances in a collection
might not be consecutive.

For an Internet Gateway Device, the specific set of objects for which this method may be used is listed in
Appendix B. The calling arguments for this method are defined in Table 25. The arguments in the
response are defined in Table 26.

Table 25 – DeleteObject arguments

Argument Type Description
ObjectName string(256) The path name of the object instance to be removed. The path name MUST end with

a “.” (dot) after the instance number of the object.

ParameterKey string(32) The value to set the ParameterKey parameter. The value of this argument is left to the
discretion of the server, and may be left empty.

 Page 37 of 109

CPE WAN Management Protocol TR-069

Table 26 – DeleteObjectResponse arguments

Argument Type Description
Status int[0:1] A successful response to this method returns an integer enumeration defined as follows:

0 = The object has been deleted.
1 = The object deletion has been validated and committed, but not yet applied (for example, if a

reboot is required before the object can be deleted).

The following fault codes are defined for this method: 9001, 9002, 9003, 9005.

A.3.2.8 Download
This method may be used by the Server to cause the CPE to download a specified file from the designated
location. The calling arguments for this method are defined in Table 27. The arguments in the response
are defined in Table 28.

Table 27 – Download arguments

Argument Type Description
CommandKey string(32) The string the CPE uses to refer to a particular download. This argument is

referenced in the methods TransferComplete and GetQueuedTransfers.

FileType string(64) An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

"1 Firmware Upgrade Image"
"2 Web Content"
“3 Vendor Configuration File”

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <OUI> <Vendor-specific identifier>"
<OUI> is replaced by a 6 hexadecimal-digit OUI (organizationally unique identifier)
as defined in [9], with all upper-case letters and any leading zeros included.

URL string(256) URL specifying the source file location. HTTP transport MUST be supported.
Other optional transports, as specified in section 2.3.2, MAY be supported.

Username string(256) Username to be used by the CPE to authenticate with the file server. This string
is set to the empty string if no authentication is required.

Password string(256) Password to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

FileSize unsignedInt The size of the file to be downloaded in bytes. The CPE may use this value to
determine if it has sufficient space for the file, or if it must free up additional space
to make room for the specified file.

TargetFileName string(256) The name of the file to be used on the target file system. This argument may be
left empty if the target file name can be extracted from the downloaded file itself,
or from the URL argument, or if no target file name is needed. If this argument is
specified, but the target file name is also indicated by another source (for
example, if it is extracted from the downloaded file itself), this argument SHOULD
be ignored. If the target file name is used, the downloaded file would replace any
existing file of the same name (whether or not the CPE archives the replaced file
is a local matter).

DelaySeconds unsignedInt The number of seconds from the time this method is called to the time the CPE is
requested to initiate the download. A value of zero indicates that no delay is
requested. If a non-zero delay is requested, the download SHOULD NOT occur in
the same transaction session in which the request was issued.

 Page 38 of 109

CPE WAN Management Protocol TR-069

Argument Type Description
SuccessURL string(256) When applicable, this argument contains the URL the CPE should redirect the

user’s browser to if the download completes successfully. This URL may include
CGI arguments as needed by the Server (for example, to maintain session state).
This applies only if the download was initiated via browser-based user interaction
and the CPE supports the ability to selectively redirect based on the download
results.
When there is no need for such a URL, this argument should be empty.

FailureURL string(256) When applicable, this argument contains the URL the CPE should redirect the
user’s browser to if the download does not complete successfully. This URL may
include CGI arguments as needed by the Server (for example, to maintain session
state).
This applies only if the download was initiated via browser-based user interaction
and the CPE supports the ability to selectively redirect based on the download
results.
When there is no need for such a URL, this argument should be empty.

Table 28 – DownloadResponse arguments

Argument Type Description
Status int[0:1] A successful response to this method returns an integer enumeration defined as

follows:
0 = Download has completed and been applied.
1 = Download has not yet completed (for example, if the CPE needs to reboot itself

before it can perform the file download).
If the value of this argument is non-zero, the CPE MUST subsequently call the
TransferComplete method to indicate the completion status of this download (either
successful or unsuccessful) either later in the same session or in a subsequent session.

StartTime dateTime The date and time download was started in UTC. This need only be filled in if the
download has been completed.

CompleteTime dateTime The date and time download was fully completed and applied in UTC. This need only
be filled in if the download has been completed.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9010, 9012, 9013.

A.3.2.9 Reboot
This method causes the CPE to reboot. The CPE MUST send the method response prior to rebooting. It
should be used with extreme caution. The calling arguments for this method are defined in Table 29. The
arguments in the response are defined in Table 30.

Note – this method is primarily intended for diagnostic purposes. This method is not intended for
use by an ACS to initiate a reboot after setting CPE parameters or initiating a download. If a
CPE requires a reboot in those cases, it is responsible for initiating that reboot on its own after
the termination of the session. Because some CPE may not require a reboot under these
circumstances, an ACS should not call this method in these cases, which would result in an
unnecessary reboot.

Table 29 – Reboot arguments

Argument Type Description
CommandKey string(32) The string to return in the CommandKey element of the InformStruct when the CPE

reboots and calls the Inform method.

 Page 39 of 109

CPE WAN Management Protocol TR-069

Table 30 – RebootResponse arguments

Argument Type Description
- void This method response has no arguments.

The following fault codes are defined for this method: 9001, 9002, 9003.

A.3.3 Server Methods
The methods listed in this section are defined to be supported on a Server. Only a CPE can call these
methods.

A.3.3.1 Inform
A CPE MUST call the Inform method to initiated a transaction sequence whenever a connection to an
ACS is established. The calling arguments for this method are defined in Table 31. The arguments in the
response are defined in Table 32.

Table 31 – Inform arguments

Argument Type Value
DeviceId DeviceIdStruct A structure that uniquely identifies the CPE, defined in Table 34.

Event EventStruct[16] An array of structures, as defined in Table 35, indicating one or more
events that caused the transaction session to be established. If one or
more causes exist, the CPE MUST list all such causes.

MaxEnvelopes unsignedInt Maximum number of SOAP envelopes in a single HTTP response that
the CPE will accept from the ACS. A value of zero indicates that there
is no specific limit on the number of envelopes.

CurrentTime dateTime The current date and time known to the CPE in UTC.

RetryCount unsignedInt Number of prior times an attempt was made to call the Inform method
before it was successfully achieved. Specifically, this value is
incremented for each unsuccessful attempt either to establish a
connection to the ACS for the purpose of sending an Inform message,
and for each unsuccessful use of the Inform message in which an error
response or no response was received. This value is reset to zero after
an Inform message was sent with a successful response.

ParameterList ParameterValueStruct[] Array of name-value pairs as specified in Table 11. The Inform request
contains a list of informational parameters, specific to a given type of
CPE. The parameters that MUST be included in the case of an Internet
Gateway Device are listed in Table 33. A CPE MAY send additional
parameters as well.

Table 32 – InformResponse arguments

Argument Type Description
MaxEnvelopes unsignedInt Maximum number of SOAP envelopes in a single HTTP post that the ACS will accept

from the CPE. A value of zero indicates that there is no specific limit on the number
of envelopes.

Table 33 lists the parameters required to be present in an Inform from an Internet Gateway Device. The
CPE MAY include additional parameters in the Inform as well.

When the Inform call results from a change to one or more parameter values (due to a cause other than
being set by the ACS itself) that the ACS has marked for notification (either active or passive) via
SetParameterAttributes, all of the changed parameters must also be included in the ParameterList. If a
parameter has changed more than once since the last such notification, only the most recent parameter
value is given.

 Page 40 of 109

CPE WAN Management Protocol TR-069

For the items marked in the Inform on Change column of Table 33, any change in the value of the
parameter MUST result in the CPE initiating a connection to the ACS to issue the Inform method call,
regardless of whether the ACS has marked these parameters for notification.

An Inform call resulting from a change to a parameter marked in Table 33 as Inform on Change, or a
parameter the ACS has marked for notification (either active or passive), MUST include the Event
"4 VALUE CHANGE" in the Event list.

Table 33 – Required Inform parameters for an Internet Gateway Device

Parameter Inform on
Change

InternetGatewayDevice.DeviceInfo.SpecVersion

InternetGatewayDevice.DeviceInfo.HardwareVersion

InternetGatewayDevice.DeviceInfo.SoftwareVersion X

InternetGatewayDevice.DeviceInfo.ProvisioningCode X

InternetGatewayDevice.ManagementServer.ConnectionRequestURL X

InternetGatewayDevice.ManagementServer.ParameterKey

InternetGatewayDevice.WANDevice.{i}.WANConnectionDevice.{j}.WAN{***}Connection.{k}.-
ExternalIPAddress8

X9

Table 34 – DeviceIdStruct definition

Name Type Description
Manufacturer string(64) Manufacturer of the device (for display only).

OUI string(6) Organizationally unique identifier of the device manufacturer. Represented
as a six hexadecimal-digit value using all upper-case letters and including
any leading zeros. The value MUST be a valid OUI as defined in [9].

ProductClass string(64) Identifier of the class of product for which the serial number applies. That is,
for a given manufacturer, this parameter is used to identify the product or
class of product over which the SerialNumber parameter is unique.

SerialNumber string(64) Identifier of the particular device that is unique for the indicated class of
product and manufacturer.

Table 35 – EventStruct definition

Name Type Description
EventCode string(64) Each value consists of an identifying character followed by a text description

of the cause. Several specific cause values are listed below, as well as a
syntax for specifying vendor-specific causes.

Value Cause
"0 BOOTSTRAP" Indicates that the session was

established due to first-time CPE
installation or a change to the ACS
URL.

8 Where {i}, {j}, and {k} refer to the default WAN connection, and {***} is either “IP” or “PPP”

depending on the type of connection.
9 The CPE must initiate an Inform whenever either the value of this parameter changes or the default WAN

connection changes to a different connection.

 Page 41 of 109

CPE WAN Management Protocol TR-069

Name Type Description
"1 BOOT" Indicates that the session was

established due to the CPE being
powered up or reset. This includes
initial system boot, as well as reboot
due to any cause, including use of the
Reboot method.

"2 PERIODIC" Indicates that the session was
established on a periodic Inform
interval.

"3 SCHEDULED" Indicates that the session was
established due to a ScheduleInform
method call.

"4 VALUE CHANGE" Indicates that the session was
established due to a change to one of
the Parameter values included in the
Inform method call. For example, the
allocation of a new IP address to the
CPE.

"5 KICKED" Indicates that the session was
established for the purpose of web
identity management (see Appendix D)
and that a Kicked method (see section
A.4.2.1) will be issued during this
session.

“6 CONNECTION
REQUEST”

Indicates that the session was
established due to a Connection
Request notification from the Server as
described in section 3.2.

“7 TRANSFER
COMPLETE”

Indicates that the session was
established to indicate the completion
of a previously requested download or
upload (either successful or
unsuccessful) and that the
TransferComplete method will be
called one or more times during this
session.

"8 DIAGNOSTICS
COMPLETE"

Used when reestablishing a
connection to the ACS after completing
a diagnostic test initiated by the ACS.
For example, the DSL loop diagnostics
(see Appendix B).

"M "<method name> If this results from another method, the
value is a “M” followed by a space and
the method name.
For example:
“M Reboot”

“X “<OUI> <event> Vendor-specific event. The OUI after
the “X“ and space is an
organizationally unique identifier
represented as a six hexadecimal-digit
value using all upper-case letters and
including any leading zeros. The value
MUST be a valid OUI as defined in [9].
The value and interpretation of
<event> is vendor-specific.
For example:
“X 00D09E MyEvent”

 Page 42 of 109

CPE WAN Management Protocol TR-069

Name Type Description
CommandKey string(32) If the Inform structure is generated in response to a cause in which a

CommandKey has been specified, this element MUST contain the value of
that CommandKey. In all other cases, this element is an empty string.
For this version of the specification, the following causes result in this
argument being set to the value of the CommandKey argument in the
originating method call:

• ScheduledInform method

• Reboot method

• Download method

• Upload method

The following fault codes are defined for this method: 8001, 8002, 8003, 8004, 8005.

A.3.3.2 TransferComplete
This method informs the server of the completion (either successful or unsuccessful) of a file transfer
initiated by an earlier Download or Upload method call. This MUST be called only when the associated
Download or Upload response indicated that the transfer had not yet completed at that time (indicated by a
non-zero value of the Status argument in the response). In such cases, it MAY be called either later in the
same session in which the transfer was initiated or in any subsequent session. When used, this method
should be called only after the transfer has completed (or failed). The criteria used by a CPE to determine
when a transfer is considered complete are specific to the implementation of the CPE. The calling
arguments for this method are defined in Table 36. The arguments in the response are defined in Table 37.

Table 36 – TransferComplete arguments

Argument Type Value
CommandKey string(32) Set to the value of the CommandKey argument passed to CPE in the Download or

Upload method call that initiated the transfer.

FaultStruct FaultStruct A FaultStruct as defined in Table 38. If the transfer was successful, the FaultCode is
set to zero. Otherwise a non-zero FaultCode is specified along with a FaultString
indicating the failure reason.

StartTime dateTime The date and time transfer was started in UTC.

CompleteTime dateTime The date and time transfer completed in UTC.

Table 37 – TransferCompleteResponse arguments

Argument Type Value
- void This method response has no arguments.

Table 38 – FaultStruct definition

Name Type Value
FaultCode unsignedInt The numerical fault code as defined in section A.5.1. In the case of a fault, allowed

values are: 9001, 9002, 9010, 9011, 9012. A value of 0 (zero) indicates no fault.

FaultString string(256) A human-readable text description of the fault. This field SHOULD be empty if the
FaultCode equals 0 (zero).

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8004, 8005.

 Page 43 of 109

CPE WAN Management Protocol TR-069

A.4 Optional RPC Messages

A.4.1 CPE Methods
The methods listed in this section may optionally be supported on a CPE device. Only a Server can call
these methods.

A.4.1.1 GetQueuedTransfers
This method may be used by a Server to determine the status of previously requested downloads or
uploads. The calling arguments for this method are defined in Table 39. The arguments in the response are
defined in Table 40.

Table 39 – GetQueuedTransfers arguments

Argument Type Description
- void This method has no calling arguments.

Table 40 – GetQueuedTransfersResponse arguments

Argument Type Description
TransferList QueuedTransferStruct[16] Array of structures as defined in Table 41, each describing the state of

one transfer that the CPE has been instructed to perform, but has not
yet been fully completed.

Table 41 – QueuedTransferStruct definition

Name Type Description
CommandKey string(32) Set to the value of the CommandKey argument passed to CPE in the Download or Upload

method call that initiated the transfer.

State int[1:3] The current state of the transfer. Defined values are:
1 = Not yet started
2 = In progress
3 = Completed, finishing cleanup

All other values are reserved.

The following fault codes are defined for this method: 9000, 9001, 9002.

A.4.1.2 ScheduleInform
This method may be used by a Server to request the CPE to schedule a one-time Inform method call
(separate from its periodic Inform method calls) sometime in the future. The calling arguments for this
method are defined in Table 42. The arguments in the response are defined in Table 43.

Table 42 – ScheduleInform arguments

Argument Type Description
DelaySeconds unsignedInt The number of seconds from the time this method is called to the time the CPE is

requested to intiate a one-time Inform method call. The CPE sends a response, and
then DelaySeconds later calls the Inform method. This argument must be greater
than zero.

CommandKey string(32) The string to return in the CommandKey element of the InformStruct when the CPE
calls the Inform method.

 Page 44 of 109

CPE WAN Management Protocol TR-069

Table 43 – ScheduleInformResponse arguments

Argument Type Description
- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

A.4.1.3 SetVouchers
This method may be used by a Server to set one or more option Vouchers in the CPE. The calling
arguments for this method are defined in Table 44. The arguments in the response are defined in Table 45.

Table 44 – SetVouchers arguments

Argument Type Description
VoucherList base64[] Array of Vouchers, where each Voucher is represented as a Base64 encoded octet string.

The detailed structure of a Voucher is defined in Appendix C.

Table 45 – SetVouchersResponse arguments

Argument Type Description
- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9004.

A.4.1.4 GetOptions
This method may be used by a Server to obtain a list of the options currently set in a CPE, and their
associated state information. The calling arguments for this method are defined in Table 46. The
arguments in the response are defined in Table 47.

Table 46 – GetOptions arguments

Argument Type Description
OptionName string(64) A string representing either the name of a particular Option, or an empty string indicating

the method should return the state of all Options supported by the CPE (whether or not
they are currently enabled).

Table 47 – GetOptionsResponse arguments

Argument Type Description
OptionList OptionStruct[] Array of OptionStructs as defined in Table 48, containing either a single OptionStruct if

information about a particular Option was requested, or a list of OptionStructs, one for
each option supported by the CPE.

Table 48 – OptionStruct definition

Name Type Description
OptionName string(64) Identifying name of the particular Option.

VoucherSN unsignedInt Identifying number of the particular Option.

 Page 45 of 109

CPE WAN Management Protocol TR-069

Name Type Description
State unsignedInt A number formed by two bits, defined as follows:

Bit 0 (LSB):
0 = Option is currently disabled
1 = Option is currently enabled

Bit 1:
0 = Option has not been setup
1 = Option has been setup

The interpretation of the setup state of an Option is Option-specific, but in
general is to be interpreted as indicating whether the end-user has
actively performed any actions required to make the Option fully
operational.

Mode int[0:2] This element specifies whether the designated Option is enabled or
disabled; and if enabled, whether or not an expiration has been specified.
The defined values are:

0 = Disabled
1 = Enabled with expiration
2 = Enabled without expiration

StartDate dateTime The specified start date for the Option in UTC. If in the future, this is the
date the Option is to be enabled. If in the past, this is the date the Option
was enabled.

ExpirationDate dateTime The specified date the Option is to expire in UTC, if any.

IsTransferable boolean Indicates whether or not the Option has been designated transferable or
non-transferable (see Appendix C). Defined values are:

0 = Non-transferable
1 = Transferable

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

A.4.1.5 Upload
This method may be used by the Server to cause the CPE to upload a specified file to the designated
location. The calling arguments for this method are defined in Table 49. The arguments in the response
are defined in Table 50.

Table 49 – Upload arguments

Argument Type Description
CommandKey string(32) The string the CPE uses to refer to a particular upload. This argument is referenced

in the methods TransferComplete and GetQueuedTransfers.

FileType string(64) An integer followed by a space followed by the file type description. Only the
following values are currently defined for the FileType argument:

“1 Vendor Configuration File”
“2 Vendor Log File”

The following format is defined to allow the unique definition of vendor-specific file
types:

"X <OUI> <Vendor-specific identifier>"
<OUI> is replaced by a 6 hexadecimal-digit OUI (organizationally unique identifier) as
defined in [9], with all upper-case letters and any leading zeros included.

URL string(256) URL specifying the destination file location. HTTP transport MUST be supported.
Other optional transports, as specified in section 2.3.2, MAY be supported.

Username string(256) Username to be used by the CPE to authenticate with the file server. This string is
set to the empty string if no authentication is required.

 Page 46 of 109

CPE WAN Management Protocol TR-069

Argument Type Description
Password string(256) Password to be used by the CPE to authenticate with the file server. This string is

set to the empty string if no authentication is required.

DelaySeconds unsignedInt The number of seconds from the time this method is called to the time the CPE is
requested to initiate the upload. A value of zero indicates that no delay is requested.
If a non-zero delay is requested, the upload SHOULD NOT occur in the same
transaction session in which the request was issues.

Table 50 – UploadResponse arguments

Argument Type Description
Status int[0:1] A successful response to this method returns an integer enumeration defined as

follows:
0 = Upload has completed.
1 = Upload has not yet completed (for example, if the upload must wait until after the

session has been terminated).
If the value of this argument is non-zero, the CPE MUST subsequently call the
TransferComplete method to indicate the completion status of this upload (either
successful or unsuccessful) either later in the same session or in a subsequent session.

StartTime dateTime The date and time upload was started in UTC. This need only be filled in if the upload
has been completed.

CompleteTime dateTime The date and time upload was fully completed and applied in UTC. This need only be
filled in if the upload has been completed.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003, 9011, 9012, 9013.

A.4.1.6 FactoryReset
This method resets the CPE to its factory default state. This method should be used with extreme caution.
The calling arguments for this method are defined in Table 51. The arguments in the response are defined
in Table 52.

Table 51 – FactoryReset arguments

Argument Type Description
- void This method has no arguments.

Table 52 – FactoryResetResponse arguments

Argument Type Description
- void This method response has no arguments.

The following fault codes are defined for this method: 9000, 9001, 9002, 9003.

A.4.2 Server Methods
The methods listed in this section may optionally be supported on a Server. Only a CPE can call these
methods.

A.4.2.1 Kicked
The CPE calls this method whenever the CPE is “kicked” as described in Appendix D. The calling
arguments for this method are defined in Table 53. The arguments in the response are defined in Table 54.

 Page 47 of 109

CPE WAN Management Protocol TR-069

Table 53 – Kicked arguments

Argument Type Value
Command string(32) Generic argument that may be used by the Server for identification or other purposes.

Referer string(64) The content of the “Referer” HTTP header sent to the CPE when it was kicked.

Arg string(256) Generic argument that may be used by the Server for identification or other purposes.

Next string(1024) The URL the Server should return in the method response under normal conditions.

Table 54 – KickedResponse arguments

Argument Type Value
NextURL string(1024) The next URL the user’s browser should be redirected to. This URL may include CGI

arguments as needed by the Server (for example, to maintain session state).
If the Server wishes to send the user’s browser to a page on the CPE device itself, only the
path portion of the URL is returned as a result (e.g. “/security/index.html”). This allows the
CPE to use its canonical hostname in the HTTP 302 response. Note that this would require
the ACS to have previous knowledge of available URLs on the CPE device through some
mechanism outside the scope of this specification.

If this method returns a fault, the CPE SHOULD redirect the browser to an error page resident on the CPE
device.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8005.

A.4.2.2 RequestDownload
This method allows the CPE to request a file download from the Server. On reception of this request, the
Server MAY call the Download method to initiate the download. The calling arguments for this method
are defined in Table 55. The arguments in the response are defined in Table 56.

Table 55 – RequestDownload arguments

Argument Type Value
FileType string(64) This is the FileType being requested (see Table 27 for the list of allowed file types).

FileTypeArg ArgStruct[16] Array of zero or more additional arguments, where each argument is a structure of
name-value pairs as defined in Table 57. The use of the additional arguments
depend on the FileType specified.
The following arguments are defined for each of the currently defined file types.

FileType FileTypeArg Names
1 Firmware Upgrade (none)

2 Web Content “Version”

3 Vendor Configuration File (none)

If the Server receives arguments that it does not understand, it MUST ignore the
unknown arguments, but process the request using the arguments that it does
understand.

Table 56 – RequestDownloadResponse arguments

Argument Type Description
- void This method response has no arguments.

 Page 48 of 109

CPE WAN Management Protocol TR-069

Table 57 – ArgStruct definition

Name Type Description
Name string(64) Argument name.

Value string(256) Argument value.

The following fault codes are defined for this method: 8000, 8001, 8002, 8003, 8005.

A.5 Fault Handling

A.5.1 CPE Fault Codes
Table 58 lists the fault codes that can be returned by a CPE. Note that the fault code values are shown in
decimal representation.

Table 58 – Fault codes

Fault code Description
9000 Method not supported

9001 Request denied (no reason specified)

9002 Internal error

9003 Invalid arguments

9004 Resources exceeded (when used in association with SetParameterValues, this MUST not be
used to indicate parameters in error)

9005 Invalid parameter name (associated with Set/GetParameterValues, GetParameterNames,
Set/GetParameterAttributes)

9006 Invalid parameter type (associated with SetParameterValues)

9007 Invalid parameter value (associated with SetParameterValues)

9008 Attempt to set a non-writable parameter (associated with SetParameterValues)

9009 Notification request rejected (associated with SetParameterAttributes method).

9010 Download failure (associated with Download or TransferComplete methods).

9011 Upload failure (associated with Upload or TransferComplete methods).

9012 File transfer server authentication failure (associated with Upload, Download, or
TransferComplete methods).

9013 Unsupported protocol for file transfer (associated with Upload and Download methods).

9800 – 9899 Vendor defined fault codes

A.5.2 Server Fault Codes
Table 59 lists the fault codes that can be returned by a Server. Note that the fault code values are shown in
decimal representation.

Table 59 – Fault codes

Fault code Description
8000 Method not supported

8001 Request denied (no reason specified)

8002 Internal error

8003 Invalid arguments

8004 Resources exceeded

8005 Retry request

 Page 49 of 109

CPE WAN Management Protocol TR-069

Fault code Description
8800 – 8899 Vendor defined fault codes

A.5.3 Server Method Retry Behavior
The CPE SHOULD retry each Server method if it is unsuccessful. When retrying an unsuccessful method
call, the CPE SHOULD use an exponential back-off algorithm in determining the retry interval.

The CPE MUST immediately retry a method call if it receives a “Retry request” (fault code 8005) in the
response.

 Page 50 of 109

CPE WAN Management Protocol TR-069

Appendix B. CPE Parameters

B.1 Introduction
This appendix defines all of the CPE Parameters for an Internet Gateway Device that are accessible via the
RPC Parameter-related methods as defined in Appendix A. This list includes Parameters that are
REQUIRED in the CPE as well as those that are OPTIONAL.

B.2 CPE Parameters
Table 61 lists all defined Parameters for an Internet Gateway Device that are accessible via the RPC
methods SetParameterValues and GetParameterValues, and GetParameterNames.

The table defines the name, the data type, whether or not the Parameter is write-accessible, whether or not
the Parameter is REQUIRED (R), OPTIONAL (O), or CONDITIONAL (C) for reading or writing, and a
description. Unless otherwise specificed, CONDITIONAL implies that the Parameter is required if the
object containing it is implemented at all.

Parameter names use a hierarchical form similar to a directory tree. The name of a particular Parameter is
represented by the concatenation of each successive node in the hierarchy separated with a “.” (dot),
starting at the trunk of the hierarchy and leading to the leaves. When specifying a partial path, indicating
an intermediate node in the hierarchy, the trailing “.” (dot) is always used as the last character.

In some cases, where multiple instances of an object can occur, the placeholder node name “{i}” is shown.
In actual use, this placeholder is to be replaced by an instance number, which MUST be a positive integer
(≥ 1). For instances of an object that are created using the AddObject method, this instance number
corresponds to the InstanceNumber argument returned by this method upon creation. Because in some
cases object instances may also be deleted, instance numbers will in general not be contiguous.

While this document only specifies the parameter list for an Internet Gateway Device, several of the objects
are expected to be usable for other types of devices. In such cases, the path name of each parameter should
match that in Table 61 with the exception that the actual device type would replace “InternetGateway-
Device” in the name. The following objects are expected to be usable in most other device types:

• DeviceInfo

• DeviceConfig

• ManagementServer

• Time

 Page 51 of 109

CPE WAN Management Protocol TR-069

B.2.1 Data Types
The parameters defined in this specification make use of a limited subset of the default SOAP data types
[8]. The complete set of parameter data types along with the notation used to represent these types is listed
in Table 60.

Table 60 – Data types

Type Description
object A container for parameters and/or other objects. The full path name of a parameter is given by the

parameter name appended to the full path name of the object it is contained within.

string For strings listed in this specification, a maximum allowed length may be listed using the form string(N),
where N is the maximum string length in characters.
For all strings a maximum length is either explicitly indicated or implied by the size of the elements
composing the string. For strings in which the content is an enumeration, the longest enumerated value
determines the maximum length. If a string does not have an explicitly indicated maximum length or is not
an enumeration, the default maximum is 16 characters.

int Integer in the range –2147483648 to +2147483647, inclusive.
For some int types listed, a value range is given using the form int[Min:Max], where the Min and Max
values are inclusive. If either Min or Max are missing, this indicates no limit.

unsignedInt Unsigned integer in the range 0 to 4294967295, inclusive.
For some unsignedInt types listed, a value range is given using the form unsignedInt[Min:Max], where the
Min and Max values are inclusive. If either Min or Max are missing, this indicates no limit.

boolean Boolean, where 1 = true and 0 = false.

dateTime The subset of the ISO 8601 date-time format defined by the SOAP dateTime type.
All times are expressed in UTC (Universal Coordinated Time) unless explicitly declared otherwise.
If absolute time is not available to the CPE, it SHOULD instead indicate time since boot. For example, 2
days, 3 hours, 4 minutes and 5 seconds since boot would be expressed as 0000-00-02T03:04:05.

base64 Base64 encoded binary.
A maximum allowed length may be listed using the form base64(N), where N is the maximum length in
characters after Base64 encoding.

All IP addresses and subnet masks are represented as strings in IPv4 dotted-decimal notation. Note that
there is no IPv6 support at this time in the parameter list described in this appendix.

All MAC addresses are represented as strings of 12 hexadecimal digits (digits 0-9, letters A-F or a-f)
displayed as six pairs of digits separated by colons.

B.2.2 Vendor-Specific Parameters
A vendor may extend the standardized parameter list with vendor-specific parameters and objects. Vendor-
specific parameters and objects may be defined either in a separate naming hierarchy or within the
standardized naming hierarchy.

The name of a vendor-specific parameter or object MUST have the form:

X_<VENDOR>_VendorSpecificName
In this definition <VENDOR> is a unique vendor identifier, which may be either an OUI or a domain
name. An OUI is an organizationally unique identifier as defined in [9], which MUST formatted as a six-
hexadecimal-digit string using all upper-case letters and including any leading zeros. A domain name
MUST be upper case with each dot (“.”) replaced with a hyphen or underscore.

The VendorSpecificName MUST be a valid string as defined in B.2.1, and MUST NOT contain a “.”
(period) or a space character.

Note – the use of the string “X_” to indicate a vendor-specific parameter implies that no standardized
parameter can begin with “X_”.

 Page 52 of 109

CPE WAN Management Protocol TR-069

Below are some example vendor-specific parameter and object names:

InternetGatewayDevice.UserInterface.X_00D09E_AdBanner
InternetGatewayDevice.LANDevice.1.X_00D09E_LANInfraredInterfaceConfig.2.Status
X_GAMECO-COM_GameDevice.Info.Type

When appropriate, a vendor may also extend the set of values of an enumeration. If this is done, the
vendor-specified values must be in the form “X_<VENDOR>_VendorSpecificValue”. The total length of
such a string MUST NOT exceed 31 characters.

B.2.3 Parameter List

Table 61 – CPE Parameter List for an Internet Gateway Device
Name10 Type Write11 Read Description
InternetGatewayDevice. object -12 R13 The top-level object for an Internet Gateway

Device.

LANDeviceNumberOfEntries unsignedInt - R Number of instances of LANDevice.

WANDeviceNumberOfEntries unsignedInt - R Number of instances of WANDevice.

InternetGatewayDevice.DeviceInfo. object - R This object contains general device information.

Manufacturer string(64) - R The manufacturer of the CPE (human readable
string).

ManufacturerOUI string(6) - R Organizationally unique identifier of the device
manufacturer. Represented as a six hexadecimal-
digit value using all upper-case letters and
including any leading zeros. The value MUST be
a valid OUI as defined in [9].

ModelName string(64) - R Model name of the CPE (human readable string).

Description string(256) - R A full description of the CPE device (human
readable string).

ProductClass string(64) - O Identifier of the class of product for which the
serial number applies. That is, for a given
manufacturer, this parameter is used to identify
the product or class of product over which the
SerialNumber parameter is unique.

SerialNumber string(64) - R Serial number of the CPE.

HardwareVersion string(64) - R A string identifying the particular CPE model and
version.

SoftwareVersion string(64) - R A string identifying the software version currently
installed in the CPE.
To allow version comparisons, this element
SHOULD be in the form of dot-delimited integers,
where each successive integer represents a more
minor category of variation. For example,
3.0.21where the components mean:
Major.Minor.Build.

10 The full name of a Parameter is the concatenation of the object name shown in the yellow header with the

individual Parameter name.
11 “R” = Required, “O” = Optional, “C” = Conditional, “-” = Not present
12 Write access for an object indicates whether the AddObject and DeleteObject actions are not allowed

(“-”), optionally allowed (“O”), required (“R”), or conditionally required if the object is supported at all
(“C”).

13 Read access for an object indicates whether or not the object is optional (“O”), required (“R”), or
conditionally required (“C”) if the CPE supports the related functionality or if the object containing it is
present.

 Page 53 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
ModemFirmwareVersion string(64) - O A string identifying the version of the modem

firmware currently installed in the CPE. This is
applicable only when the modem firmware is
separable from the overall CPE software.

EnabledOptions string-
(1024)

- O Comma-separated list of the OptionName of each
Option that is currently enabled in the CPE. The
OptionName of each is identical to the
OptionName element of the OptionStruct
described in Table 48. Only those options are
listed whose State indicates the option is enabled.

AdditionalHardwareVersion string(64) - O A comma separated list of any additional versions.
Represents any additional hardware version
information the vendor may wish to supply.

AdditionalSoftwareVersion string(64) - O A comma separated list of any additional versions.
Represents any additional software version
information the vendor may wish to supply.

SpecVersion string(16) - R Represents the version of the specification
implemented by the device. Currently 1.0 is the
only available version.

ProvisioningCode string(64) R R Identifier of the primary service provider and other
provisioning information, which MAY be used by
the Server to determine service provider-specific
customization and provisioning parameters.
If non-empty, this argument SHOULD be in the
form of a hierarchical descriptor with one or more
nodes specified. Each node in the hierarchy is
represented as a 4-character sub-string,
containing only numerals or upper-case letters. If
there is more than one node indicated, each node
is separated by a "." (dot). Examples: “TLCO” or
“TLCO.GRP2”.

UpTime unsignedInt - R Time in seconds since the CPE was last restarted.

FirstUseDate dateTime - O Date and time in UTC that the CPE first
successfully established a network connection.

DeviceLog string(32K) - R Vendor-specific log(s).

VendorConfigFileNumberOfEntries unsignedInt - O Number of instances of VendorConfigFile.

InternetGatewayDevice.DeviceInfo.Vendor-
ConfigFile.{i}.

object - O Every instance of this object is a Vendor
Configuration File, and contains parameters
associated with the Vendor Configuration File.

Name string(64) - C Name of the vendor configuration file.

Version string(16) - C A string identifying the configuration file version
currently used in the CPE.

Date dateTime - C Date and time when the content of the current
version of this vendor configuration file was first
applied by the CPE.

Description string(256) - O A description of the vendor configuration file
(human-readable string).

InternetGatewayDevice.DeviceConfig. object - O This object contains general configuration
parameters.

PersistentData string(256) O O Arbitrary user data that must persist across CPE
reboots.

ConfigFile string(32K) O O A dump of the currently running configuration on
the CPE. This parameter enables the ability to
backup and restore the last known good state of
the CPE. It returns a vendor-specific document
that defines the state of the CPE. The document
must be capable of restoring the CPE’s state
when written back to the CPE using
SetParameterValues.

 Page 54 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InternetGatewayDevice.ManagementServer. object - R This object contains parameters relating to the

CPE’s association with an ACS.

URL string(256) R R URL for the CPE to connect to the ACS using the
CPE WAN Management Protocol.
This parameter MUST be in the form of a valid
HTTP or HTTPS URL [5]. An HTTPS URL
indicates that the ACS supports SSL.
The “host” portion of this URL is used by the CPE
for validating the certificate from the ACS when
using certificate-based authentication.

Username string(256) R - Username used to authenticate the CPE when
making a connection to the ACS using the CPE
WAN Management Protocol.
This username is used only for HTTP-based
authentication of the CPE.

Password string(256) R - Password used to authenticate the CPE when
making a connection to the ACS using the CPE
WAN Management Protocol.
This password is used only for HTTP-based
authentication of the CPE.
When read, this parameter returns an empty
string, regardless of the actual value.

PeriodicInformEnable boolean R R Whether or not the CPE must periodically send
CPE information to Server using the Inform
method call.

PeriodicInformInterval unsignedInt
[1:]

R R The duration in seconds of the interval for which
the CPE MUST attempt to connect with the ACS
and call the Inform method if PeriodicInform-
Enable is true.

PeriodicInformTime dateTime R R An absolute time reference in UTC to determine
when the CPE should initiate the Inform method
calls. Each Inform call must occur at this
reference time plus or minus an integer multiple of
the PeriodicInformInterval.
A zero dateTime value (0000-00-00T00:00:00)
indicates that no particular time reference is
specified. That is, the CPE may locally choose
the time reference, required only to adhere to the
specified PeriodicInformInterval.

ParameterKey string(32) - R The value of the ParameterKey argument from the
most recent SetParameterValues, AddObject, or
DeleteObject method call from the Server. If there
have been no such calls, this value is empty.

ConnectionRequestURL string(256) - R HTTP URL for an ACS to make a Connection
Request notification to the CPE.
In the form:

http://host:port/path
The “host” portion of the URL MAY be the IP
address for the management interface of the CPE
in lieu of a host name.

ConnectionRequestUsername string(256) R R Username used to authenticate an ACS making a
Connection Request to the CPE.

ConnectionRequestPassword string(256) R - Password used to authenticate an ACS making a
Connection Request to the CPE.
When read, this parameter returns an empty
string, regardless of the actual value.

 Page 55 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
UpgradesManaged boolean R R Indicates whether or not the ACS will manage

upgrades for the CPE. If true (1), the CPE
SHOULD not use other means other than the ACS
to seek out available upgrades. If false (0), the
CPE MAY use other means for this purpose.

KickURL string(256) - O Present only for a CPE that supports the Kicked
RPC method.
LAN-accessible URL from which the CPE can be
“kicked” to initiate the Kicked RPC method call.
MUST be an absolute URL including a host name
or IP address as would be used on the LAN side
of the CPE.

DownloadProgressURL string(256) - O Present only for a CPE that provides a LAN-side
web page to show progress during a file
download.
LAN-accessible URL to which a web-server
associated with the ACS may redirect a user’s
browser on initiation of a file download to observer
the status of the download.

InternetGatewayDevice.Time. object - O This object contains parameters relating an NTP
or SNTP time client in the CPE. Support for this
object is Optional.

NTPServer1 string(64) C C First NTP timeserver. Either a host name or IP
address.

NTPServer2 string(64) C C Second NTP timeserver. Either a host name or IP
address.

NTPServer3 string(64) O O Third NTP timeserver. Either a host name or IP
address.

NTPServer4 string(64) O O Fourth NTP timeserver. Either a host name or IP
address.

NTPServer5 string(64) O O Fifth NTP timeserver. Either a host name or IP
address.

CurrentLocalTime dateTime - C The current date and time in the CPE’s local time
zone.

LocalTimeZone string(6) C C The local time offset from UTC in the form:
+hh:mm
-hh:mm

LocalTimeZoneName string(64) C C Name of the local time zone (human readable
string).

DaylightSavingsUsed boolean C C Whether or not daylight savings time is in use in
the CPE’s local time zone.

DaylightSavingsStart dateTime C C Date and time daylight savings time begins if used
in local standard time. If daylight savings time is
not used, this value is ignored.

DaylightSavingsEnd dateTime C C Date and time daylight savings time ends if used
in local daylight time. If daylight savings time is
not used, this value is ignored.

InternetGatewayDevice.UserInterface. object - O This object contains parameters relating to the
user interface of the CPE. Support for this object
is Optional.

PasswordRequired boolean O O Present only if the CPE provides a password-
protected LAN-side user interface.
Indicates whether or not the local user interface
must require a password to be chosen by the
user. If false, the choice of whether or not a
password is used is left to the user.

 Page 56 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
PasswordUserSelectable boolean O O Present only if the CPE provides a password-

protected LAN-side user interface and supports
LAN-side Auto-Configuration.
Indicates whether or not a password to protect the
local user interface of the CPE may be selected
by the user directly, or must be equal to the
password used by the LAN-side Auto-
Configuration protocol.

UpgradeAvailable boolean O O Indicates that a CPE upgrade is available,
allowing the CPE to display this information to the
user.

WarrantyDate dateTime O O Indicates the date and time in UTC that the
warranty associated with the CPE is to expire.

ISPName string(64) O O The name of the customer’s ISP.

ISPHelpDesk string(32) O O The help desk phone number of the ISP.

ISPHomePage string(256) O O The URL of the ISP’s home page.

ISPHelpPage string(256) O O The URL of the ISP’s on-line support page.

ISPLogo base64
(5460)

O O Base64 encoded GIF or JPEG image. The binary
image is constrained to 4095 bytes or less.

ISPLogoSize unsignedInt
[0:4095]

O O Un-encoded binary image size in bytes.
If ISPLogoSize input value is 0 then the ISPLogo
is cleared.
ISPLogoSize can also be used as a check to
verify correct transfer and conversion of Base64
string to image size.

ISPMailServer string(256) O O The URL of the ISP’s mail server.

ISPNewsServer string(256) O O The URL of the ISP’s news server.

TextColor string(6) O O The color of text on the GUI screens in RGB
hexidecimal notation (e.g., FF0088).

BackgroundColor string(6) O O The color of the GUI screen backgrounds in RGB
hexidecimal notation (e.g., FF0088).

ButtonColor string(6) O O The color of buttons on the GUI screens in RGB
hexidecimal notation (e.g., FF0088).

ButtonTextColor string(6) O O The color of text on buttons on the GUI screens in
RGB hexidecimal notation (e.g., FF0088).

AutoUpdateServer string(256) O O The server the CPE can check to see if an update
is available for direct download to it. This MUST
NOT be used by the CPE if the InternetGateway-
Device.ManagementServer.UpgradesManaged
parameter is true (1).

UserUpdateServer string(256) O O The server where a user can check via a web
browser if an update is available for download to a
PC. This MUST NOT be used by the CPE if the
InternetGatewayDevice.ManagementServer.-
UpgradesManaged parameter is true (1).

ExampleLogin string(40) O O An example of a correct login, according to ISP-
specific rules.

ExamplePassword string(30) O O An example of a correct password, according to
ISP-specific rules.

InternetGatewayDevice.Layer3Forwarding. object - R This object allows the handling of the routing and
forwarding configuration of the device.

DefaultConnectionService string(256) R R Specifies the default WAN interface. The content
is the full hierarchical parameter name of the
default layer-3 connection object. Example:
“InternetGatewayDevice.WANDevice.1.WAN-
ConnectionDevice.2.WANPPPConnection.1”.

ForwardNumberOfEntries unsignedInt - R Number of forwarding instances.

 Page 57 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InternetGatewayDevice.Layer3Forwarding.-
Forwarding.{i}.

object R R Layer-3 forwarding table.

Enable boolean R R Enables or disables the forwarding entry. On
creation, an entry is disabled by default.

Status string - R Indicates the status of the forwarding entry.
Enumeration of:

“Disabled”
“Enabled”
“Error”

Type string R R Indicates the type of route. Enumeration of:
“Default”
“Network”
“Host”

DestIPAddress string R R Destination address.

DestSubnetMask string R R Destination subnet mask.

SourceIPAddress string R R Source address.

SourceSubnetMask string R R Source subnet mask.

GatewayIPAddress string R R IP address of the gateway.

Interface string R R Specifies the WAN interface associated with this
entry. The content is the full hierarchical
parameter name of the layer-3 connection object.
Example: “InternetGatewayDevice.WANDevice.1.-
WANConnectionDevice.2.WANPPPConnection.-
1”.

ForwardingMetric int[-1:] R R Forwarding metric. A value of -1 indicates this
metric is not used.

MTU unsignedInt
[1:1540]

O O The maximum allowed size of an Ethernet frame
for this route.

InternetGatewayDevice.LANConfigSecurity. object - R This object contains generic device configuration
information.

ConfigPassword string(64) R - A password to allow LAN access to protected
auto-configuration services.
When read, this parameter returns an empty
string, regardless of the actual value.

 Page 58 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InternetGatewayDevice.IPPingDiagnostics object - O This object is provides access to an IP-layer ping

test.

DiagnosticsState string C C Indicates availability of diagnostic data. One of:
“None”
“Requested”
“Complete”
“Error_CannotResolveHostName”

Value may be set to Requested to initiate the
diagnostic test. When writing, the only allowed
value is Requested. To ensure the use of the
proper test parameters (the writable parameters in
this object), the test parameters MUST be set
either prior to or at the same time as (in the same
SetParameterValues) setting the DiagnosticState
to Requested.
When requested, the CPE SHOULD wait until
after completion of the communication session
with the ACS before starting the diagnostic.
When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow
the ACS to view the results, indicating the Event
code "8 DIAGNOSTICS COMPLETE" in the
Inform message.

Interface string(256) C C Specifies the WAN or LAN IP-layer interface over
which the test is to be performed. The content is
the full hierarchical parameter name of the
interface.
The following is a WAN interface example:

“InternetGatewayDevice.WANDevice.1.-
WANConnectionDevice.2.WANPPP-
Connection.1”

The following is a LAN interface example:
”InternetGatewayDevice.LANDevice.1.LAN-
HostConfigManagement.IPInterface.1”

Host string(256) C C Host name or address of the host to ping.

NumberOfRepetitions unsignedInt
[1:]

C C Number of repetitions of the ping test to perform
before reporting the results.

Timeout unsignedInt
[1:]

C C Timeout in milliseconds for the ping test.

DataBlockSize unsignedInt
[1:65535]

C C Size of the data block in bytes to be sent for each
ping.

DSCP unsignedInt
[0:64]

C C DiffServ codepoint to be used for the test packets.
By default the CPE should set this value to zero.

SuccessCount unsignedInt - C Result parameter indicating the number of
successful pings (those in which a successful
response was received prior to the timeout) in the
most recent ping test.

FailureCount unsignedInt - C Result parameter indicating the number of failed
pings in the most recent ping test.

AverageResponseTime unsignedInt - C Result parameter indicating the average response
time in milliseconds over all repetitions with
successful responses of the most recent ping test.
If there were no successful responses, this value
MUST be zero.

 Page 59 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
MinimumResponseTmie unsignedInt - C Result parameter indicating the minimum

response time in milliseconds over all repetitions
with successful responses of the most recent ping
test. If there were no successful responses, this
value MUST be zero.

MaximumResponseTime unsignedInt - C Result parameter indicating the maximum
response time in milliseconds over all repetitions
with successful responses of the most recent ping
test. If there were no successful responses, this
value MUST be zero.

InternetGatewayDevice.LANDevice.{i} object - R Each instance contains all LAN-related objects for
a given bridged subnet.

LANEthernetInterfaceNumberOfEntries unsignedInt - R Number of instances of LANEthernetInterface-
Config in this LANDevice.

LANUSBInterfaceNumberOfEntries unsignedInt - R Number of instances of LANUSBInterfaceConfig
in this LANDevice.

LANWLANConfigurationNumberOfEntries unsignedInt - R Number of instances of WLANConfiguration in this
LANDevice.

InternetGatewayDevice.LANDevice.{i}.LAN-
HostConfigManagement.

object - R This object enables reporting of LAN-related
device information and setting and configuring
LAN IP addressing.

DHCPServerConfigurable boolean R R Enables the configuration of the DHCP server on
the LAN interface. If this variable is set to false,
the CPE should restore its default DHCP server
settings.

DHCPServerEnable boolean R R Enables or disables the DHCP server on the LAN
interface.

DHCPRelay boolean - R Indicates if the DHCP server performs the role of
a server (0) or a relay (1) on the LAN interface.

MinAddress string R R Specifies first address in the pool to be assigned
by the DHCP server on the LAN interface.

MaxAddress string R R Specifies last address in the pool to be assigned
by the DHCP server on the LAN interface.

ReservedAddresses string R R Comma separated list of addresses marked
reserved from the address allocation pool.

SubnetMask string R R Specifies the client’s network subnet mask.

DNSServers string R R Comma separated list of DNS servers offered to
DHCP clients. Support for more than three DNS
Servers is Optional.

DomainName string(64) R R Sets the domain name to provide to clients on the
LAN interface.

IPRouters string R R Comma separated list of IP addresses of routers
on this subnet. Also known as default gateway.
Support for more than one Router address is
Optional.

DHCPLeaseTime int[-1:] O O Specifies the lease time in seconds of client
assigned addresses. A value of -1 indicates an
infinite lease.

 Page 60 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
UseAllocatedWAN string O O Enumeration of:

“Normal”
“UseAllocatedSubnet”
“Passthrough”

If Normal, then DHCP addresses are to be
allocated out of a private address pool.
If UseAllocatedSubnet, instructs the CPE to
allocate DHCP addresses from the WAN subnet
block for the WAN connection identified in
AssociatedConnection.
If Passthrough, then the specified LAN Host
identified by the Passthrough MAC address is
given the WAN IP address.

AssociatedConnection string(256) O O Specifies the connection instance for the
connection to be used for address allocation if
UseAllocatedWAN is set to UseAllocatedSubnet
or Passthrough. The content is the full
hierarchical parameter name of the default layer-3
connection object. Example: “InternetGateway-
Device.WANDevice.1.WANConnectionDevice.2.-
WANPPPConnection.1”.

PassthroughLease unsignedInt O O DHCP lease time in seconds given to the
specified LAN Host when the WAN IP address is
passed-through.
Note: A temporary private IP address with short
lease (for example, 1 min) may be given to the
passthrough LAN Host before the WAN IP
address is acquired.

PassthroughMACAddress string O O Hardware address of the LAN Host that is used to
passthrough the WAN IP address if
UseAllocatedWAN is “Passthrough”.

AllowedMACAddresses string O O Represents a comma-separated list of hardware
addresses that are allowed to connect to this
connection if MACAddressControlEnabled is 1 for
a given interface.

IPInterfaceNumberOfEntries unsignedInt - R Number of IP interface at LAN side of the CPE. 1
is a typical value for CPE not supporting
Multihomed interfaces. Support for more than one
interface instance is Optional.

InternetGatewayDevice.LANDevice.{i}.LAN-
HostConfigManagement.IPInterface.{i}.

object O R IP interface table.

Enable boolean R R Enables or disables this entry. On creation, an
entry is disabled by default.

IPInterfaceIPAddress string R R IP address of the LAN-side interface of the CPE.

IPInterfaceSubnetMask string R R Subnet mask of the LAN-side interface of the IGD.

IPInterfaceAddressingType string R R Represents the addressing method used to assign
the LAN-side IP address of the CPE on this
interface. Enumeration of:

“DHCP”
“Static”
“AutoIP”

InternetGatewayDevice.LANDevice.{i}.LAN-
EthernetInterfaceConfig.{i}.

object - C This object models an Ethernet LAN connection
on a CPE device. This object must be
implemented for CPE that contain an Ethernet
interface on the LAN side.

Enable boolean C C Enables or disables this interface.

 Page 61 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
Status string - C Indicates the status of this interface. Enumeration

of:
“Up”
“NoLink”
“Error”
“Disabled”

MACAddress string - C The physical address of the interface.

MACAddressControlEnabled boolean C C Indicates whether MAC Address Control is
enabled or not on this interface. MAC Address
Control limits the clients that connect to those that
match a list of allowed MAC addresses specified
in InternetGatewayDevice.LANDevice.{i}.LAN-
HostConfigManagement.AllowedMACAddresses.

MaxBitRate string C C The maximum upstream and downstream bit rate
available to this connection. Enumeration of:

“10”
“100”
“1000”
“Auto”

DuplexMode string C C The duplex mode available to this connection.
Enumeration of:

“Half”
“Full”
“Auto”

InternetGatewayDevice.LANDevice.{i}.LAN-
EthernetInterfaceConfig.{i}.Stats.

object - C This object contains statistics for an Ethernet LAN
interface on a CPE device.

BytesSent unsignedInt - C Total number of bytes sent over the interface
since the CPE was last reset.

BytesReceived unsignedInt - C Total number of bytes received over the interface
since the CPE was last reset.

PacketsSent unsignedInt - C Total number of packets sent over the interface
since the CPE was last reset.

PacketsReceived unsignedInt - C Total number of packets received over the
interface since the CPE was last reset.

InternetGatewayDevice.LANDevice.{i}.LAN-
USBInterfaceConfig.{i}.

object - C This object models a USB LAN connection on a
CPE device. This object must be implemented for
CPE that contain a USB interface on the LAN
side.

Enable boolean C C Enables or disables this interface.

Status string - C Indicates the status of this interface. Enumeration
of:

“Up”
“NoLink”
“Error”
“Disabled”

MACAddress string - C The physical address of the interface.

MACAddressControlEnabled boolean C C Indicates whether MAC Address Control is
enabled or not on this interface. MAC Address
Control limits the clients that connect to those that
match a list of allowed MAC addresses specified
in InternetGatewayDevice.LANDevice.{i}.LAN-
HostConfigManagement.AllowedMACAddresses.

Standard string(6) - C USB version supported by the device.

 Page 62 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
Type string - C Type of the USB interface. Enumeration of:

“Host”
“Hub”
“Device”

Rate string - C Speed of the USB interface. Enumeration of:
“Low”
“Full”
“High” (USB 2.0)

Power string - C Power configuration of the USB interface.
Enumeration of:

“Self”
“Bus”
“Unknown”

InternetGatewayDevice.LANDevice.{i}.LAN-
USBInterfaceConfig.{i}.Stats.

object - C This object contains statistics for a USB LAN
interface on a CPE device.

BytesSent unsignedInt - C Total number of bytes sent over the interface
since the CPE was last reset.

BytesReceived unsignedInt - C Total number of bytes received over the interface
since the CPE was last reset.

CellsSent unsignedInt - C Total number of cells sent over the interface since
the CPE was last reset.

CellsReceived unsignedInt - C Total number of cells received over the interface
since the CPE was last reset.

InternetGatewayDevice.LANDevice.{i}.WLAN-
Configuration.{i}.

object - C This object models an 802.11 LAN connection on
a CPE device. This object must be implemented
for CPE that contain an 802.11 interface on the
LAN side.

Enable boolean C C Enables or disables this interface.

Status string - C Indicates the status of this interface. Enumeration
of:

“Up”
“Error”
“Disabled”

BSSID string - C The MAC address of the interface.

MaxBitRate string(4) C C The maximum upstream and downstream bit rate
available to this connection in Mbps. Either
“Auto”, or the largest of the
OperationalDataTransmitRates values.

Channel unsignedInt
[0:255]

C C The current radio channel used by the connection.
Note: There is currently no way of requesting
automatic selection of a channel.

SSID string(32) C C The current service set identifier in use by the
connection. The SSID is an identifier that is
attached to packets sent over the wireless LAN
that functions as a “password” for joining a
particular radio network (BSS). Note: If an access
point wishes to be known by more than one SSID,
it must provide a WLANConfiguration instance for
each SSID.

 Page 63 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
BeaconType string C C The breacon types to be use with this connection.

Enumeration of:
“None”
“Basic”
“WPA”
“11i” (Optional)
“BasicandWPA” (Optional)
“Basicand11i’ (Optional)
“WPAand11i” (Optional)
“BasicandWPAand11i” (Optional)

MACAddressControlEnabled bool C C Indicates whether MAC Address Control is
enabled or not on this interface. MAC Address
Control limits the clients that connect to those that
match a list of allowed MAC addresses specified
in InternetGatewayDevice.LANDevice.{i}.LAN-
HostConfigManagement.AllowedMACAddresses.

Standard string - C Indicates which IEEE 802.11 mode the device is
currently operating in. Enumeration of:

“a”
“b”
“g”

WEPKeyIndex unsignedInt
[1:4]

C C The index of the default WEP key.

KeyPassphrase string(63) C - A passphrase from which the WEP keys were
generated. This parameter for information only—
the CPE is not responsible for generating the key
based on the passphrase.
This parameter is the same as the parameter
InternetGatewayDevice.LANDevice.{i}.WLAN-
Configuration.{i}.PreSharedKey.1.KeyPassprhase
for the same instance of WLANConfiguration.
When either parameter is changed, the value of
the other is changed as well.
This must either be a valid key length divided by
8, in which case each byte contributes 8 bits to the
key, or else must consist of Hex digits and be a
valid key length divided by 4, in which case each
byte contributes 4 bits to the key.
Note: If a passphrase is used, all four WEP keys
will be the same.
When read, this parameter returns an empty
string, regardless of the actual value.

WEPEncryptionLevel string(64) - C Comma-separated list of the supported key
lengths. Each entry in the list is an enumeration
of:

“Disabled”
“40-bit”
“104-bit”

Any additional vendor-specific values must start
with the key length in bits.

BasicEncryptionModes string(31) C C Encryption modes that are available when basic
802.11 is enabled. “WEPEncryption” implies that
all wireless clients can use WEP for data
encryption. Enumeration of:

“None”
“WEPEncryption”

 Page 64 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
BasicAuthenticationMode string(31) C C Authentication modes that are available when

basic 802.11 is enabled. Enumeration of:
“None”
“EAPAuthentication” (Optional)

WPAEncryptionModes string(31) C C Encryption modes that are available when WPA is
enabled. Enumeration of:

“WEPEncryption”
“TKIPEncryption”
“WEPandTKIPEncryption”
“AESEncryption” (Optional)
“WEPandAESEncryption” (Optional)
“TKIPandAESEncryption” (Optional)
“WEPandTKIPandAESEncryption”
(Optional)

WPAAuthenticationMode string(31) C C Authentication modes that are available when
WPA is enabled. Enumeration of:

“PSKAuthentication”
“EAPAuthentication” (Optional)

IEEE11iEncryptionModes string(31) O O Encryption modes that are available when 802.11i
is enabled. Enumeration of:

“WEPEncryption”
“TKIPEncryption”
“WEPandTKIPEncryption”
“AESEncryption” (Optional)
“WEPandAESEncryption” (Optional)
“TKIPandAESEncryption” (Optional)
“WEPandTKIPandAESEncryption” (Optional)

IEEE11iAuthenticationMode string(31) O O Authentication modes that are available when
802.11i is enabled. Enumeration of:

“PSKAuthentication”
“EAPAuthentication” (Optional)
“EAPandPSKAuthentication” (Optional)

PossibleChannels string
(1024)

- C The possible radio channels for the wireless
standard (a, b or g) and the regulatory domain.
Comma-separated list. Ranges in the form “n-m”
are permitted.
For example, for 802.11b and North America,
would be “1-11”.

BasicDataTransmitRates string(256) C C Comma-separated list of the maximum access
point data transmit rates in Mbps for unicast,
multicast and broadcast frames.
For example, a value of “1,2”, indicates that
unicast, multicast and broadcast frames can be
transmitted at 1 Mbps and 2 Mbps.

OperationalDataTransmitRates string(256) C C Comma-separated list of the maximum access
point data transmit rates in Mbps for unicast
frames (a superset of BasicDataTransmitRates).
Given the value of BasicDataTransmitRates from
the example above, OperationalDataTransmit-
Rates might be “1,2,5.5,11”, indicating that unicast
frames can additionally be transmitted at 5.5 Mbps
and 11 Mbps.

 Page 65 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
PossibleDataTransmitRates string(256) - C Comma-separated list of the data transmit rates

for unicast frames at which the access point will
permit a station to connect (a subset of
OperationalDataTransmitRates).
Given the values of BasicDataTransmitRates and
OperationalDataTransmitRates from the examples
above, PossibleDataTransmitRates might be
“1,2,5.5”, indicating that the AP will only permit
connections at 1 Mbps, 2 Mbps and 5.5 Mbps,
even though it could theoretically accept
connections at 11 Mbps.

InsecureOOBAccessEnabled boolean O O Indicates whether insecure write access via
mechanisms other than the CPE WAN
Management Protocol is permitted to the
parameters in this object.

BeaconAdvertisementEnabled boolean O O Indicates whether or not the access point is
sending out beacons.

RadioEnabled boolean C C Indicates whether or not the access point radio is
enabled.

AutoRateFallBackEnabled boolean C C Indicates whether the access point can
automatically reduce the data rate in the event of
undue noise or contention.

LocationDescription string
(4096)

C C An XML description of information used to identify
the access point by name and physical location.
The CPE is not expected to parse this string, but
simply to treat it as an opaque string. An empty
string indicates no location has been set.

RegulatoryDomain string(3) O O 802.11d Regulatory Domain String. First two
octets are ISO/IEC 3166-1 two-character country
code. The third octet is either “ “ (all
environments), “O” (outside) or “I” (inside).

TotalPSKFailures unsignedInt - O The number of times pre-shared key (PSK)
authentication has failed (relevant only to WPA
and 802.11i).

TotalIntegrityFailures unsignedInt - O The number of times the MICHAEL integrity check
has failed (relevant only to WPA and 802.11i)

ChannelsInUse string
(1024)

- O The channels that the access point determines to
be currently in use (including any that it is using
itself).
Comma-separated list. Ranges in the form “n-m”
are permitted.

DeviceOperationMode string(31) O O The current access-point operating mode. The
optional modes permit the AP to be configured as
a wireless bridge (to bridge two wired networks),
repeater (a bridge that also serves wireless
clients), or wireless station. Ad hoc stations are
not supported. Enumeration of:

“InfrastructureAccessPoint”
“WirelessBridge” (Optional)
“WirelessRepeater” (Optional)
“WirelessStation” (Optional)

DistanceFromRoot unsignedInt O O The number of hops from the root access point to
the wireless repeater or bridge.

PeerBSSID string O O The MAC address of the peer in wireless repeater
or bridge mode.

 Page 66 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
AuthenticationServiceMode string O O Indicates whether another service is involved in

client authentication (LinkAuthentication for a co-
located authentication server; RadiusClient for an
external RADIUS server). Enumeration of:

“None”
“LinkAuthentication” (Optional)
“RadiusClient” (Optional)

TotalBytesSent unsignedInt - C Total number of bytes sent over the interface
since the CPE was last reset.

TotalBytesReceived unsignedInt - C Total number of bytes received over the interface
since the CPE was last reset.

TotalPacketsSent unsignedInt - C Total number of packets sent over the interface
since the CPE was last reset.

TotalPacketsReceived unsignedInt - C Total number of packets received over the
interface since the CPE was last reset.

TotalAssociations unsignedInt - C The number of devices currently associated with
the access point. This corresponds to the number
of entries in the AssociatedDeivce table.

InternetGatewayDevice.LANDevice.{i}.WLAN-
Configuration.{i}.AssociatedDevice.{i}.

object - C A table of the devices currently associated with
the access point. The size of this table is given by
InternetGatewayDevice.LANDevice.{i}.WLAN-
Configuration.{i}.TotalAssociations. This object
must be implemented for CPE that contain an
802.11 interface on the LAN side.

AssociatedDeviceMACAddress string - C The MAC address of an associated device.

AssociatedDeviceIPAddress string(64) - C The IP address or DNS name of an associated
device.

AssociatedDeviceAuthenticationState boolean - C Whether an associated device has authenticated
(true) or not (false).

LastRequestedUnicastCipher string(256) - O The unicast cipher that was most recently used for
a station with a specified MAC address (802.11i
only).

LastRequestedMulticastCipher string(256) - O The multicast cipher that was most recently used
for a station with a specified MAC address
(802.11i only).

LastPMKId string(256) - O The pairwise master key (PMK) that was most
recently used for a station with a specified MAC
address (802.11i only).

InternetGatewayDevice.LANDevice.{i}.WLAN-
Configuration.{i}.WEPKey.{i}.

object - C This is a table of WEP keys. The size of this table
is fixed with exactly 4 entries (with instance
numbers 1 through 4). This object must be
implemented for CPE that contain an 802.11
interface on the LAN side.

WEPKey string(128) C - A WEP key expressed as a hexadecimal string.
The WEP encryption level is inferred from the key
length, e.g. 10 characters for 40-bit encryption, or
26 characters for 104-bit encryption.
When read, this parameter returns an empty
string, regardless of the actual value.

 Page 67 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InternetGatewayDevice.LANDevice.{i}.WLAN-
Configuration.{i}.PreSharedKey.{i}.

object - C This is a table of preshared keys. The size of this
table is fixed with exactly 10 entries (with instance
numbers 1 through 10). This object must be
implemented for CPE that contain an 802.11
interface on the LAN side.

PreSharedKey string(64) C - A literal WPA PSK expressed as a hexadecimal
string.
The first table entry contains the default
PreSharedKey (InternetGatewayDevice.LAN-
Device.{i}.WLANConfiguration.{i}.PreShared-
Key.1.PreSharedKey).
When read, this parameter returns an empty
string, regardless of the actual value.

KeyPassphrase string(63) C - A passphrase from which WEP or PSK keys were
generated. This parameter for information only—
the CPE is not responsible for generating the key
based on the passphrase.
For WEP keys it must either be a valid key length
divided by 8, in which case each byte contributes
8 bits to the key, or else must consist of Hex digits
and be a valid key length divided by 4, in which
case each byte contributes 4 bits to the key.
For WPA PSK, the key is generated as specified
by WPA, which uses PBKDF2 from PKCS #5:
Password-based Cryptography Specification
Version 2.0 (RFC2898)..
Note: The 802.11i standard specifies rules for
generation of WEP keys from a passphrase.
When read, this parameter returns an empty
string, regardless of the actual value.

AssociatedDeviceMACAddress string O O The MAC address associated with a preshared
key, or an empty string if no MAC address is
associated with the key.

InternetGatewayDevice.LANDevice.{i}.Hosts. object - R This object provides information about each of the
hosts on the LAN, including those whose IP
address was allocated by the CPE using DHCP as
well as hosts with statically allocated IP
addresses.

HostNumberOfEntries unsignedInt - R Number of entries in the Host table.

InternetGatewayDevice.LANDevice.{i}.Hosts.-
Host.{i}.

object - R Host table.

IPAddress string - R Current IP Address of the host.

AddressSource string - R Indicates whether the IP address of the host was
allocated by the CPE using DHCP, was assigned
to the host statically, or was assigned using
automatic IP address allocation. Enumeration of:

“DHCP”
“Static”
”AutoIP”

LeaseTimeRemaining int[-1:] - R DHCP lease time remaining in seconds. A value
of -1 indicates an infinite lease. The value must
be 0 (zero) if the AddressSource is not DHCP.

MACAddress string - R MAC address of the host.

HostName string(64) - R The device’s host name or empty string if
unknown.

 Page 68 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InterfaceType string - R Type of physical interface through which this host

is connected to the CPE. Enumeration of:
“Ethernet”
“USB”
“802.11”
“HomePNA”
“HomePlug”
“Other”

Active boolean - R Whether or not the host is currently present on the
LAN. The method of presence detection is a local
matter to the CPE.
The ability to list inactive hosts is Optional. If the
CPE includes inactive hosts in this table, this
variable MUST be set to zero for each inactive
host. The length of time an inactive host remains
listed in this table is a local matter to the CPE.

InternetGatewayDevice.WANDevice.{i}. object - R Each instance contains all objects associated with
a particular physical WAN interface.

WANConnectionNumberOfEntries unsignedInt - R Number of instances of WANConnectionDevice in
this WANDevice.

InternetGatewayDevice.WANDevice.{i}.WAN-
CommonInterfaceConfig.

object - R This object models WAN interface properties
common across all connection instances.

EnabledForInternet boolean R R Used to enable or disable access to and from the
Internet across all connection instances.

WANAccessType string - R Specifies the WAN access (modem) type.
Enumeration of:

“DSL”
“Ethernet”
“POTS”

Layer1UpstreamMaxBitRate unsignedInt - R Specifies the maximum upstream theoretical bit
rate for the WAN device in bits per second.

Layer1DownstreamMaxBitRate unsignedInt - R Specifies the maximum downstream theoretical bit
rate for the WAN device in bits per second.

PhysicalLinkStatus string - R Indicates the state of the physical connection (link)
from WANDevice to a connected entity.
Enumeration of:

“Up”
“Down”
“Initializing”
“Unavailable”

WANAccessProvider string(256) - O Name of the Service Provider providing link
connectivity on the WAN.

TotalBytesSent unsignedInt - R The cumulative counter for total number of bytes
sent upstream across all connection service
instances on the WAN device.

TotalBytesReceived unsignedInt - R The cumulative counter for total number of bytes
received downstream across all connection
service instances on the WAN device.

TotalPacketsSent unsignedInt - R The cumulative counter for total number of
packets (IP or PPP) sent upstream across all
connection service instances on the WAN device.

TotalPacketsReceived unsignedInt - R The cumulative counter for total number of
packets (IP or PPP) received downstream across
all connection service instances on the WAN
device.

 Page 69 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
MaximumActiveConnections unsignedInt - O Indicates the maximum number of active

connections the CPE can simultaneously support.

NumberOfActiveConnections unsignedInt - O Number of WAN connection service instances
currently active on this WAN interface.

InternetGatewayDevice.WANDevice.{i}.WAN-
CommonInterfaceConfig.Connection.{i}.

object - O Active connection table.

ActiveConnectionDeviceContainer string(256) - O Specifies a WAN connection device object
associated with this connection instance. The
content is the full hierarchical parameter name of
the WAN connection device. Example: “Internet-
GatewayDevice.WANDevice.1.WANConnection-
Device.2”.

ActiveConnectionServiceID string(256) - O Specifies a WAN connection object associated
with this connection instance. The content is the
full hierarchical parameter name of the layer-3
connection object. Example: “InternetGateway-
Device.WANDevice.1.WANConnectionDevice.2.-
WANPPPConnection.1”.

InternetGatewayDevice.WANDevice.{i}.WAN-
DSLInterfaceConfig.

object - C This object models physical layer properties
specific to a single physical connection of a DSL
modem used for Internet access on a CPE. This
object is required for a CPE with a DSL modem
WAN interface, and is exclusive of any other
WAN*InterfaceConfig object within a given WAN-
Device instance.

Enable boolean C C Enables or disables the link.

Status string - C Status of the DSL physical link. Enumeration of:
“Up”
“Initializing”
“EstablishingLink”
“NoSignal”
“Error”
“Disabled”

ModulationType string - O Indicates the type of modulation used on the
connection. Enumeration of:

“ADSL_G.dmt”
“ADSL_G.lite”
“ADSL_G.dmt.bis”
“ADSL_re-adsl”
“ADSL_2plus”
“ADLS_four”
“ADSL_ANSI_T1.413”
“G.shdsl”
“IDSL”
“HDSL”
“SDSL”
“VDSL”

 Page 70 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
LineEncoding string - O The line encoding method used in establishing the

Layer 1 DSL connection between the CPE and the
DSLAM. Note: Generally speaking, this variable
does not change after provisioning. Enumeration
of:

“DMT”
”CAP”
”2B1Q”
”43BT”
”PAM”
”QAM”

DataPath string - O Indicates whether the data path is fast (lower
latency) or interleaved (lower error rate).
Enumeration of:

“Interleaved”
“Fast”

InterleaveDepth unsignedInt - O ADSL Interleaved depth. This variable is only
applicable if DataPath = Interleaved.

LineNumber int[1:] - O Signifies the line pair that the modem is using to
connection. LineNumber = 1 is the innermost pair.

UpstreamCurrRate unsignedInt - C The current payload bandwidth (expressed in
Kbps) of the upstream DSL channel.

DownstreamCurrRate unsignedInt - C The current payload bandwidth (expressed in
Kbps) of the downstream DSL channel.

UpstreamMaxRate unsignedInt - C The current attainable rate (expressed in Kbps) of
the upstream DSL channel.

DownstreamMaxRate unsignedInt - C The current attainable rate (expressed in Kbps) of
the downstream DSL channel.

UpstreamNoiseMargin int - C The current signal-to-noise ratio (expressed in 0.1
db) of the upstream DSL connection.

DownstreamNoiseMargin int - C The current signal-to-noise ratio (expressed in 0.1
db) of the downstream DSL connection.

UpstreamAttenuation int - C The current upstream signal loss (expressed in
0.1 dB).

DownstreamAttenuation int - C The current downstream signal loss (expressed in
0.1 dB).

UpstreamPower int - C The current output power at the CPE's DSL
interface (expressed in 0.1 dBmV),

DownstreamPower int - C The current received power at the CPE's DSL
interface (expressed in 0.1 dBmV),

ATURVendor string(8) - C ATU-R vendor identifier as defined in G.994.1 and
T1.413.

ATURCountry unsignedInt - C T.35 country code of the ATU-R vendor as defined
in G.994.1.

ATURANSIStd unsignedInt - O ATU-R T1.413 Revision Number as defined in
T1.413 Issue 2.

ATURANSIRev unsignedInt - O ATU-R Vendor Revision Number as defined in
T1.413 Issue 2.

ATUCVendor string(8) - C ATU-C vendor identifier as defined in G.994.1 and
T1.413.

ATUCCountry unsignedInt - C T.35 country code of the ATU-C vendor as defined
in G.994.1.

ATUCANSIStd unsignedInt - O ATU-C T1.413 Revision Number as defined in
T1.413 Issue 2.

 Page 71 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
ATUCANSIRev unsignedInt - O ATU-C Vendor Revision Number as defined in

T1.413 Issue 2.

TotalStart unsignedInt - C Number of seconds since the beginning of the
period used for collection of Total statistics.
Statistics SHOULD continue to be accumulated
across CPE reboots, though this may not always
be possible.

ShowtimeStart unsignedInt - C Number of seconds since the most recent DSL
Showtime—the beginning of the period used for
collection of Showtime14 statistics.

LastShowtimeStart unsignedInt - O Number of seconds since the second most recent
DSL Showtime—the beginning of the period used
for collection of LastShowtime statistics.
If the CPE has not retained information about the
second most recent Showtime (e.g., on reboot),
the start of LastShowtime statistics MAY
temporarily coincide with the start of Showtime
statistics.

CurrentDayStart unsignedInt - O Number of seconds since the beginning of the
period used for collection of CurrentDay statistics.
The CPE MAY align the beginning of each
CurrentDay interval with days in the UTC time
zone, but is not required to do so.
Statistics SHOULD continue to be accumulated
across CPE reboots, though this may not always
be possible.

QuarterHourStart unsignedInt - O Number of seconds since the beginning of the
period used for collection of QuarterHour
statistics.
The CPE MAY align the beginning of each
QuarterHour interval with real-time quarter-hour
intervals, but is not required to do so.
Statistics SHOULD continue to be accumulated
across CPE reboots, though this may not always
be possible.

InternetGatewayDevice.WANDevice.{i}.WAN-
DSLInterfaceConfig.Stats.

object - C This object contains statistics for a WAN DSL
physical interface.

InternetGatewayDevice.WANDevice.{i}.WAN-
DSLInterfaceConfig.Stats.Total.

object - C This object contains DSL total statistics.

ReceiveBlocks unsignedInt - C Total number of successfully received blocks.

TransmitBlocks unsignedInt - C Total number of successfully transmitted blocks.

CellDelin unsignedInt - C Total number of cell-delineation errors (total
seconds with NCD or LCD failures as defined in
ITU-T Rec. G.997.1).

LinkRetrain unsignedInt - C Total number of link-retrain errors (Full
Initialization Count as defined in ITU-T Rec.
G.997.1).

InitErrors unsignedInt - C Total number of initialization errors (LINIT failures
as defined in ITU-T Rec. G.997.1).

InitTimeouts unsignedInt - C Total number of initialization timeout errors.

LossOfFraming unsignedInt - C Total number of loss-of-framing errors (LOF
failures as defined in ITU-T Rec. G.997.1).

ErroredSecs unsignedInt - C Total number of errored seconds (ES-L as defined
in ITU-T Rec. G.997.1).

14 Showtime is defined as successful completion of the DSL link establishment process. The Showtime

statistics are those collected since the most recent establishment of the DSL link.

 Page 72 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
SeverelyErroredSecs unsignedInt - C Total number of severely errored seconds (SES-L

as defined in ITU-T Rec. G.997.1).

FECErrors unsignedInt - C Total number of FEC errors detected (FEC-C as
defined in ITU-T Rec. G.997.1).

ATUCFECErrors unsignedInt - C Total number of FEC errors detected by the
ATU-C (FEC-CFE as defined in ITU-T Rec.
G.997.1).

HECErrors unsignedInt - C Total number of HEC errors detected (HEC-P as
defined in ITU-T Rec. G.997.1).

ATUCHECErrors unsignedInt - C Total number of HEC errors detected by the
ATU-C (HEC-PFE as defined in ITU-T Rec.
G.997.1).

CRCErrors unsignedInt - C Total number of CRC errors detected (CV-C as
defined in ITU-T Rec. G.997.1).

ATUCCRCErrors unsignedInt - C Total number of CRC errors detected by the
ATU-C (CV-CFE as defined in ITU-T Rec.
G.997.1).

InternetGatewayDevice.WANDevice.{i}.WAN-
DSLInterfaceConfig.Stats.Showtime.

object - C This object contains DSL statistics accumulated
since the most recent DSL Showtime.

ReceiveBlocks unsignedInt - C Number of successfully received blocks since the
most recent DSL Showtime.

TransmitBlocks unsignedInt - C Number of successfully transmitted blocks since
the most recent DSL Showtime.

CellDelin unsignedInt - C Number of cell-delineation errors since the most
recent DSL Showtime (total seconds with NCD or
LCD failures as defined in ITU-T Rec. G.997.1).

LinkRetrain unsignedInt - C Number of link-retrain errors since the most recent
DSL Showtime (Full Initialization Count as defined
in ITU-T Rec. G.997.1).

InitErrors unsignedInt - C Number of initialization errors since the most
recent DSL Showtime (LINIT failures as defined in
ITU-T Rec. G.997.1).

InitTimeouts unsignedInt - C Number of initialization timeout errors since the
most recent DSL Showtime.

LossOfFraming unsignedInt - C Number of loss-of-framing errors since the most
recent DSL Showtime (LOF failures as defined in
ITU-T Rec. G.997.1).

ErroredSecs unsignedInt - C Number of errored seconds since the most recent
DSL Showtime (ES-L as defined in ITU-T Rec.
G.997.1).

SeverelyErroredSecs unsignedInt - C Number of severely errored seconds since the
most recent DSL Showtime (SES-L as defined in
ITU-T Rec. G.997.1).

FECErrors unsignedInt - C Number of FEC errors detected since the most
recent DSL Showtime (FEC-C as defined in ITU-T
Rec. G.997.1).

ATUCFECErrors unsignedInt - C Number of FEC errors detected by the ATU-C
since the most recent DSL Showtime (FEC-CFE
as defined in ITU-T Rec. G.997.1).

HECErrors unsignedInt - C Number of HEC errors detected since the most
recent DSL Showtime (HEC-P as defined in ITU-T
Rec. G.997.1).

ATUCHECErrors unsignedInt - C Number of HEC errors detected by the ATU-C
since the most recent DSL Showtime (HEC-PFE
as defined in ITU-T Rec. G.997.1).

CRCErrors unsignedInt - C Number of CRC errors detected since the most
recent DSL Showtime (CV-C as defined in ITU-T
Rec. G.997.1).

 Page 73 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
ATUCCRCErrors unsignedInt - C Number of CRC errors detected by the ATU-C

since the most recent DSL Showtime (CV-CFE as
defined in ITU-T Rec. G.997.1).

InternetGatewayDevice.WANDevice.{i}.WAN-
DSLInterfaceConfig.Stats.LastShowtime.

object - O This object contains DSL statistics accumulated
since the second most recent DSL Showtime.

ReceiveBlocks unsignedInt - O Number of successfully received blocks since the
second most recent DSL Showtime.

TransmitBlocks unsignedInt - O Number of successfully transmitted blocks since
the second most recent DSL Showtime.

CellDelin unsignedInt - O Number of cell-delineation errors since the second
most recent DSL Showtime (total seconds with
NCD or LCD failures as defined in ITU-T Rec.
G.997.1).

LinkRetrain unsignedInt - O Number of link-retrain errors since the second
most recent DSL Showtime (Full Initialization
Count as defined in ITU-T Rec. G.997.1).

InitErrors unsignedInt - O Number of initialization errors since the second
most recent DSL Showtime (LINIT failures as
defined in ITU-T Rec. G.997.1).

InitTimeouts unsignedInt - O Number of initialization timeout errors since the
second most recent DSL Showtime.

LossOfFraming unsignedInt - O Number of loss-of-framing errors since the second
most recent DSL Showtime (LOF failures as
defined in ITU-T Rec. G.997.1).

ErroredSecs unsignedInt - O Number of errored seconds since the second
most recent DSL Showtime (ES-L as defined in
ITU-T Rec. G.997.1).

SeverelyErroredSecs unsignedInt - O Number of severely errored seconds since the
second most recent DSL Showtime (SES-L as
defined in ITU-T Rec. G.997.1).

FECErrors unsignedInt - O Number of FEC errors detected since the second
most recent DSL Showtime (FEC-C as defined in
ITU-T Rec. G.997.1).

ATUCFECErrors unsignedInt - O Number of FEC errors detected by the ATU-C
since the second most recent DSL Showtime
(FEC-CFE as defined in ITU-T Rec. G.997.1).

HECErrors unsignedInt - O Number of HEC errors detected since the second
most recent DSL Showtime (HEC-P as defined in
ITU-T Rec. G.997.1).

ATUCHECErrors unsignedInt - O Number of HEC errors detected by the ATU-C
since the second most recent DSL Showtime
(HEC-PFE as defined in ITU-T Rec. G.997.1).

CRCErrors unsignedInt - O Number of CRC errors detected since the second
most recent DSL Showtime (CV-C as defined in
ITU-T Rec. G.997.1).

ATUCCRCErrors unsignedInt - O Number of CRC errors detected by the ATU-C
since the second most recent DSL Showtime
(CV-CFE as defined in ITU-T Rec. G.997.1).

InternetGatewayDevice.WANDevice.{i}.WAN-
DSLInterfaceConfig.Stats.CurrentDay.

object - O This object contains DSL statistics accumulated
during the current day.

ReceiveBlocks unsignedInt - O Number of successfully received blocks during the
current day.

TransmitBlocks unsignedInt - O Number of successfully transmitted blocks during
the current day.

CellDelin unsignedInt - O Number of cell-delineation errors during the
current day (total seconds with NCD or LCD
failures as defined in ITU-T Rec. G.997.1).

 Page 74 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
LinkRetrain unsignedInt - O Number of link-retrain errors during the current

day (Full Initialization Count as defined in ITU-T
Rec. G.997.1).

InitErrors unsignedInt - O Number of initialization errors during the current
day (LINIT failures as defined in ITU-T Rec.
G.997.1).

InitTimeouts unsignedInt - O Number of initialization timeout errors during the
current day.

LossOfFraming unsignedInt - O Number of loss-of-framing errors during the
current day (LOF failures as defined in ITU-T Rec.
G.997.1).

ErroredSecs unsignedInt - O Number of errored seconds during the current day
(ES-L as defined in ITU-T Rec. G.997.1).

SeverelyErroredSecs unsignedInt - O Number of severely errored seconds during the
current day (SES-L as defined in ITU-T Rec.
G.997.1).

FECErrors unsignedInt - O Number of FEC errors detected during the current
day (FEC-C as defined in ITU-T Rec. G.997.1).

ATUCFECErrors unsignedInt - O Number of FEC errors detected by the ATU-C
during the current day (FEC-CFE as defined in
ITU-T Rec. G.997.1).

HECErrors unsignedInt - O Number of HEC errors detected during the current
day (HEC-P as defined in ITU-T Rec. G.997.1).

ATUCHECErrors unsignedInt - O Number of HEC errors detected by the ATU-C
during the current day (HEC-PFE as defined in
ITU-T Rec. G.997.1).

CRCErrors unsignedInt - O Number of CRC errors detected during the current
day (CV-C as defined in ITU-T Rec. G.997.1).

ATUCCRCErrors unsignedInt - O Number of CRC errors detected by the ATU-C
during the current day (CV-CFE as defined in
ITU-T Rec. G.997.1).

InternetGatewayDevice.WANDevice.{i}.WAN-
DSLInterfaceConfig.Stats.QuarterHour.

object - O This object contains DSL statistics accumulated
during the current quarter hour.

ReceiveBlocks unsignedInt - O Number of successfully received blocks during the
current quarter hour.

TransmitBlocks unsignedInt - O Number of successfully transmitted blocks during
the current quarter hour.

CellDelin unsignedInt - O Number of cell-delineation errors during the
current quarter hour (total seconds with NCD or
LCD failures as defined in ITU-T Rec. G.997.1).

LinkRetrain unsignedInt - O Number of link-retrain errors during the current
quarter hour (Full Initialization Count as defined in
ITU-T Rec. G.997.1).

InitErrors unsignedInt - O Number of initialization errors during the current
quarter hour (LINIT failures as defined in ITU-T
Rec. G.997.1).

InitTimeouts unsignedInt - O Number of initialization timeout errors during the
current quarter hour.

LossOfFraming unsignedInt - O Number of loss-of-framing errors during the
current quarter hour (LOF failures as defined in
ITU-T Rec. G.997.1).

ErroredSecs unsignedInt - O Number of errored seconds during the current
quarter hour (ES-L as defined in ITU-T Rec.
G.997.1).

SeverelyErroredSecs unsignedInt - O Number of severely errored seconds during the
current quarter hour (SES-L as defined in ITU-T
Rec. G.997.1).

 Page 75 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
FECErrors unsignedInt - O Number of FEC errors detected during the current

quarter hour (FEC-C as defined in ITU-T Rec.
G.997.1).

ATUCFECErrors unsignedInt - O Number of FEC errors detected by the ATU-C
during the current quarter hour (FEC-CFE as
defined in ITU-T Rec. G.997.1).

HECErrors unsignedInt - O Number of HEC errors detected during the current
quarter hour (HEC-P as defined in ITU-T Rec.
G.997.1).

ATUCHECErrors unsignedInt - O Number of HEC errors detected by the ATU-C
during the current quarter hour (HEC-PFE as
defined in ITU-T Rec. G.997.1).

CRCErrors unsignedInt - O Number of CRC errors detected during the current
quarter hour (CV-C as defined in ITU-T Rec.
G.997.1).

ATUCCRCErrors unsignedInt - O Number of CRC errors detected by the ATU-C
during the current quarter hour (CV-CFE as
defined in ITU-T Rec. G.997.1).

InternetGatewayDevice.WANDevice.{i}.WAN-
EthernetInterfaceConfig.

object - C This object models physical layer properties
specific to a single Ethernet physical connection
used for Internet access on a CPE. This object is
required for a CPE with an Ethernet WAN
interface, and is exclusive of any other
WAN*InterfaceConfig object within a given WAN-
Device instance. Note that this object is not
related to the Ethernet protocol layer sometimes
used in associated with a DSL connection.

Enable boolean C C Enables or disables this interface.

Status string - C Indicates the status of this interface. Enumeration
of:

“Up”
“NoLink”
“Error”
“Disabled”

MACAddress string - C The physical address of the interface.

MaxBitRate string C C The maximum upstream and downstream bit rate
available to this connection. Enumeration of:

“10”
“100”
“Auto”

DuplexMode string C C The duplex mode available to this connection.
Enumeration of:

“Half”
“Full”
“Auto”

InternetGatewayDevice.WANDevice.{i}.WAN-
EthernetInterfaceConfig.Stats.

object - C This object contains statistics for an Ethernet
WAN interface on a CPE device.

BytesSent unsignedInt - C Total number of bytes sent over the interface
since the CPE was last reset.

BytesReceived unsignedInt - C Total number of bytes received over the interface
since the CPE was last reset.

PacketsSent unsignedInt - C Total number of packets sent over the interface
since the CPE was last reset.

PacketsReceived unsignedInt - C Total number of packets received over the
interface since the CPE was last reset.

 Page 76 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InternetGatewayDevice.WANDevice.{i}.WAN-
DSLConnectionManagement.

object - C This object is required for a CPE with a DSL
modem WAN interface

ConnectionServiceNumberOfEntries unsignedInt - R Number of table entries in the ConnectionService
table.

InternetGatewayDevice.WANDevice.{i}.WAN-
DSLConnectionManagement.Connection-
Service.{i}.

object - C This table contains an entry for each connection
service.

WANConnectionDevice string(256) - R Specifies a WAN connection device object
associated with this connection instance. The
content is the full hierarchical parameter name of
the WAN connection device. Example: “Internet-
GatewayDevice.WANDevice.1.WANConnection-
Device.2”.

WANConnectionService string(256) - R Specifies a WAN connection object associated
with this connection instance. The content is the
full hierarchical parameter name of the layer-3
connection object. Example: “InternetGateway-
Device.WANDevice.1.WANConnectionDevice.2.-
WANPPPConnection.1”.

DestinationAddress string(256) - R Destination address of the WANConnectionDevice
entry. One of:

PVC: VPI/VCI
SVC: ATM connection name
SVC: ATM address

LinkType string - R Link Type of the WANConnectionDevice entry.
One of Link Types as described in
WANDSLLinkConfig

ConnectionType string - R Connection Type of the WANPPPConnection or
WANIPConnection entry. One of
PossibleConnectionTypes as described in
WAN**Connection service.

Name string(32) - - User-readable name of the connection.

InternetGatewayDevice.WANDevice.{i}.WAN-
DSLDiagnostics.

object - C This object is required for a CPE with an ADSL2
or ADSL2+ modem WAN interface, and optional
otherwise.

LoopDiagnosticsState string C C Indicates availability of diagnostic data. One of:
“None”
“Requested”
“Complete”

Value may be set to Requested to initiate the
diagnostic test, which brings down the DSL
connection while the test is operating. When
writing, the only allowed value is Requested.
When requested, the CPE SHOULD wait until
after completion of the communication session
with the ACS before starting the diagnostic.
When the diagnostic initiated by the ACS is
completed, the CPE MUST establish a new
connection to the ACS to allow the ACS to view
the results, indicating the corresponding reason in
the Inform message.

ACTPSDds int - C Downstream actual power spectral density.
Interpretation of the value is as defined in ITU-T
Rec. G.997.1.

ACTPSDus int - C Upstream actual power spectral density.
Interpretation of the value is as defined in ITU-T
Rec. G.997.1.

 Page 77 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
ACTATPds int - C Downstream actual aggregate transmitter power.

Interpretation of the value is as defined in ITU-T
Rec. G.997.1.

ACTATPus int - C Upstream actual aggregate transmitter power.
Interpretation of the value is as defined in ITU-T
Rec. G.997.1.

HLINSCds int - C Downstream linear representation scale.
Interpretation of the value is as defined in ITU-T
Rec. G.997.1.

HLINpsds string - C Downstream linear channel characteristics per
subcarrier. Comma-separated list of integers.
Each successive pair of integers represents the
real and imaginary parts of each complex value.
Maximum number of complex pairs is 256 for
ADSL and ADSL2, 512 for ADSL2+.
Interpretation of the value is as defined in ITU-T
Rec. G.997.1.

QLNpsds string - C Downstream quiet line noise per subcarrier.
Comma-separated list of integers. Maximum
number of elements is 256 for ADSL and ADSL2,
512 for ADSL2+. Interpretation of the value is as
defined in ITU-T Rec. G.997.1.

SNRpsds string - C Downstream SNR per subcarrier. Comma-
separated list of integers. Maximum number of
elements is 256 for ADSL and ADSL2, 512 for
ADSL2+. Interpretation of the value is as defined
in ITU-T Rec. G.997.1.

BITSpsds string - C Downstream bit allocation per subcarrier.
Comma-separated list of integers. Maximum
number of elements is 256 for ADSL and ADSL2,
512 for ADSL2+. Interpretation of the value is as
defined in ITU-T Rec. G.997.1.

GAINSpsds string - C Downstream gain allocation per subcarrier.
Comma-separated list of integers. Maximum
number of elements is 256 for ADSL and ADSL2,
512 for ADSL2+. Interpretation of the value is as
defined in ITU-T Rec. G.997.1.

InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.

object C C Each instance contains objects associated with a
given WAN link. In this case of DSL, each
instance corresponds to a single ATM VC. On
creation of a WANConnectionDevice instance,
there are initially no connection objects contained
within.

WANIPConnectionNumberOfEntries unsignedInt - C Number of instances of WANIPConnection in this
WANConnectionDevice.

WANPPPConnectionNumberOfEntries unsignedInt - C Number of instances of WANPPPConnection in
this WANConnectionDevice.

InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANDSLLinkConfig.

object - C This object models the ATM layer properties
specific to a single physical connection of a DSL
modem used for Internet access on a CPE. This
object is required for a CPE with a DSL modem
WAN interface, and is exclusive of any other
WAN*LinkConfig object within a given WAN-
ConnectionDevice instance.

Enable boolean C C Enables or disables the link. On creation of a
WANConnectionDevice, this object is disabled by
default.

 Page 78 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
LinkStatus string - C Status of the link. Enumeration of:

“Up”
“Down”
“Initializing”
“Unavailable”

LinkType string C C Indicates the type of DSL connection and refers to
the complete stack of protocol used for this
connection. Enumeration of:

“EoA” (RFC2684 bridged Ethernet over ATM)
“IPoA” (RFC2684 routed IP over ATM)
“PPPoA” (RFC2364 PPP over ATM)
“PPPoE” (RFC2516 PPP over Ethernet on

RFC2684 bridged Ethernet over
ATM)

“CIP” (RFC1577 Classical IP over ATM)
“Unconfigured”

AutoConfig boolean - C Indicates if the CPE is currently using some auto
configuration mechanisms for this connection. If
this variable is TRUE, all writable variables in this
connection instance become read-only. Any
attempt to change one of these variables
SHOULD fail and an error should be returned.

ModulationType string - O Indicates the type of DSL modulation used on the
interface associated with this connection
(duplication from WANDSLInterfaceConfig).
Enumeration of:

“ADSL_G.dmt”
“ADSL_G.lite”
“ADSL_G.dmt.bis”
“ADSL_re-adsl”
“ADSL_2plus”
“ADLS_four”
“ADSL_ANSI_T1.413”
“G.shdsl”
“IDSL”
“HDSL”
“SDSL”
“VDSL”

DestinationAddress string(256) C C Destination address of this link. One of:
PVC: VPI/VCI
SVC: ATM connection name
SVC: ATM address

ATMEncapsulation string O O Identifies the connection encapsulation that will be
used.
Enumeration of

“LLC”
“VCMUX”

 Page 79 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
FCSPreserved boolean O O This flag tells if a checksum should be added in

the ATM payload. It does not refer to the
checksum of one of the ATM cells or AALX
packets. In case of LLC or VCMUX encapsulation,
this ATM checksum is the FCS field described in
RFC 1483. It is only applicable in the upstream
direction.

VCSearchList string O O Comma separated ordered list of VPI/VCI pairs to
search if a link using the DestinationAddress
cannot be established. In the form:

VPI1/VCI1, VPI2/VCI2, …
Example:

“0/35, 8/35, 1/35”

ATMAAL string - O Describes the ATM Adaptation Layer (AAL)
currently in use on the PVC. Enumeration of:

“AAL1”
“AAL2”
“AAL3”
“AAL4”
“AAL5”

ATMTransmittedBlocks unsignedInt - C The current count of successfully transmitted
blocks.

ATMReceivedBlocks unsignedInt - C The current count of successfully received blocks.

ATMQoS string O O Describes the ATM Quality Of Service (QoS)
being used on the VC. Enumeration of:

“UBR”
“CBR”
“GFR”
“VBR-nrt”
“VBR-rt”
“UBR+”
“ABR”

ATMPeakCellRate unsignedInt O O Specifies the upstream peak cell rate in cells per
second.

ATMMaximumBurstSize unsignedInt O O Specifies the upstream maximum burst size in
cells.

ATMSustainableCellRate unsignedInt O O Specifies the upstream sustainable cell rate, in
cells per second, used for traffic shaping.

AAL5CRCErrors unsignedInt - C Count of the AAL5 layer cyclic redundancy check
errors.

ATMCRCErrors unsignedInt - C Count of the ATM layer cyclic redundancy check
errors.

ATMHECErrors unsignedInt - O Count of the number of Header Error Check
related errors at the ATM layer.

 Page 80 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANATMF5Loopback-
Diagnostics

object - O This object is provides access to an ATM-layer F5
OAM loopback test.

DiagnosticsState string C C Indicates availability of diagnostic data. One of:
“None”
“Requested”
“Complete”

Value may be set to Requested to initiate the
diagnostic test. When writing, the only allowed
value is Requested. To ensure the use of the
proper test parameters (the writable parameters in
this object), the test parameters MUST be set
either prior to or at the same time as (in the same
SetParameterValues) setting the DiagnosticState
to Requested.
When requested, the CPE SHOULD wait until
after completion of the communication session
with the ACS before starting the diagnostic.
When the diagnostic initiated by the ACS is
completed (successfully or not), the CPE MUST
establish a new connection to the ACS to allow
the ACS to view the results, indicating the Event
code "8 DIAGNOSTICS COMPLETE" in the
Inform message.

NumberOfRepetitions unsignedInt
[1:]

C C Number of repetitions of the ping test to perform
before reporting the results.

Timeout unsignedInt
[1:]

C C Timeout in milliseconds for the ping test.

SuccessCount unsignedInt - C Result parameter indicating the number of
successful pings (those in which a successful
response was received prior to the timeout) in the
most recent ping test.

FailureCount unsignedInt - C Result parameter indicating the number of failed
pings in the most recent ping test.

AverageResponseTime unsignedInt - C Result parameter indicating the average response
time in milliseconds over all repetitions with
successful responses of the most recent ping test.
If there were no successful responses, this value
MUST be zero.

MinimumResponseTime unsignedInt - C Result parameter indicating the minimum
response time in milliseconds over all repetitions
with successful responses of the most recent ping
test. If there were no successful responses, this
value MUST be zero.

MaximumResponseTime unsignedInt - C Result parameter indicating the maximum
response time in milliseconds over all repetitions
with successful responses of the most recent ping
test. If there were no successful responses, this
value MUST be zero.

 Page 81 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANEthernetLink-
Config.

object - C This object models the Ethernet link layer
properties specific to a single physical connection
used for Internet access on a CPE. This object is
required for a CPE with an Ethernet WAN
interface, and is exclusive of any other WAN*Link-
Config object within a given WANConnection-
Device instance. Note that this object is not
related to the Ethernet protocol layer sometimes
used in associated with a DSL connection.

EthernetLinkStatus string - C Status of the Ethernet link. Enumeration of:
“Up”
“Down”
“Unavailable”

InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANPOTSLinkConfig.

object - C This object models the POTS link layer properties
specific to a single physical connection used for
Internet access on a CPE. This object is required
for a CPE with a POTS WAN interface, and is
exclusive of any other WAN*LinkConfig object
within a given WANConnectionDevice instance.

Enable boolean C C Enables or disables the link. On creation of a
WANConnectionDevice, this object is disabled by
default.

LinkStatus string - C Status of the link. Enumeration of:
“Up”
“Down”
“Dialing”
“Connecting”
“Unavailable”

ISPPhoneNumber string(64) O C Specifies a list of strings separated by semicolon
(;), each string representing a phone number to
connect to a particular ISP. The digits of the
phone number follow the semantics of the ITU-T
E.164 specification. Delimiters such as brackets or
hyphens between the digits of a phone number
are to be ignored by the CPE.

ISPInfo string(64) O C Information identifying the Internet Service
Provider. The format of the string is vendor
specific.

LinkType string O C This variable indicates the type of POTS link used
for the dialup connection. Enumeration of:

“PPP_Dialup”

NumberOfRetries unsignedInt O C The number of times the CPE should attempt an
Internet connection setup before returning error.

DelayBetweenRetries unsignedInt O C The number of seconds the CPE should wait
between attempts to setup an Internet connection.

Fclass string - O Specifies capabilities of the POTS modem – i.e., if
it handles data (0), fax (1,2,2.0), voice (8), DSVD
(80). Comma separated list of the following
enumeration:

“0”
“1”
“2”
“2.0”
“8”
“80”

 Page 82 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
DataModulationSupported string - O The modulation standard currently being used for

data. Enumeration of:
“V92”
“V90”
“V34”
“V32bis”
“V32”

DataProtocol string - O The protocol standard currently being used for
data transfers. Enumeration of:

“V42_LAPM”
“V42_MNP4”
“V14”
“V80”

DataCompression string - O The compression technology implemented on the
modem. Enumeration of:

“V42bis”
“MNP5”

PlusVTRCommandSupported boolean - O Capability for full duplex operation with data and
voice.

InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANIPConnection.{i}.

object R R This object enables configuration of IP
connections on the WAN interface of a CPE. This
object is required for all WANConnectionDevices
not employing PPP addressing, and must not be
active for WANConnectionDevices that do employ
PPP addressing.

Enable boolean R R Enables or disables the connection instance. On
creation of a WANIPConnection instance, it is
initially disabled.

ConnectionStatus string - R Current status of the connection. Enumeration of:
“Unconfigured”
“Connecting”
“Connected”
“PendingDisconnect”
“Disconneting”
“Disconnected”

PossibleConnectionTypes string - R A comma-separated list indicating the types of
connections possible for this connection instance.
Each element of the list is an enumeration of:

“Unconfigured”
“IP_Routed”
“IP_Bridged”

ConnectionType string R R Specifies the connection type of the connection
instance. Enumeration of:

“Unconfigured”
“IP_Routed”
“IP_Bridged”

Name string(256) R R User-readable name of this connection.

Uptime unsignedInt - R The time in seconds that this connection has been
up.

 Page 83 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
LastConnectionError string - R The cause of failure for the last connection setup

attempt. Enumeration of:
“ERROR_NONE”

“ERROR_COMMAND_ABORTED”

“ERROR_NOT_ENABLED_FOR_INTERNET”

“ERROR_USER_DISCONNECT”

“ERROR_ISP_DISCONNECT”

“ERROR_IDLE_DISCONNECT”

“ERROR_FORCED_DISCONNECT”

“ERROR_NO_CARRIER”

“ERROR_IP_CONFIGURATION”

“ERROR_UNKNOWN”

AutoDisconnectTime unsignedInt O O The time in seconds since the establishment of
the connection after which connection termination
is automatically initiated by the CPE. This occurs
irrespective of whether the connection is being
used or not. A value of 0 (zero) indicates that the
connection is not to be shut down automatically.

IdleDisconnectTime unsignedInt O O The time in seconds that if the connection remains
idle, the CPE automatically terminates the
connection. A value of 0 (zero) indicates that the
connection is not to be shut down automatically.

WarnDisconnectDelay unsignedInt O O Time in seconds the Status remains in the
pending disconnect state before transitioning to
disconnecting state to drop the connection.

RSIPAvailable boolean - R Indicates if Realm-specific IP (RSIP) is available
as a feature on the CPE.

NATEnabled boolean C R Indicates if Network Address Translation (NAT) is
enabled for this connection. This parameter
MUST be writable if NAT is supported by the CPE.

AddressingType string O R The method used to assign an address to the
WAN side interface of the CPE for this connection.
Enumeration of:

“DHCP”
“Static”

ExternalIPAddress string O R This is the external IP address used by NAT for
this connection. This parameter is configurable
only if the AddressingType is Static.

SubnetMask string O R Subnet mask of the WAN interface. This
parameter is configurable only if the
AddressingType is Static.

DefaultGateway string O R The IP address of the default gateway for this
connection. This parameter is configurable only if
the AddressingType is Static.

DNSEnabled boolean O R Whether or not the device should attempt to query
a DNS server across this connection.

DNSOverrideAllowed boolean O R Whether or not a manually set, non-empty DNS
address can be overridden by a DNS entry
received from the WAN.

DNSServers string O R Comma separated list of DNS server IP
addresses for this connection. Support for more
than three DNS Servers is Optional.

MaxMTUSize unsignedInt
[1:1540]

O O The maximum allowed size of an Ethernet frame
from LAN-side devices.

MACAddress string O R The physical address of the WANIPConnection if
applicable. Configurable only if
MACAddressOverride is present and true (1).

 Page 84 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
MACAddressOverride boolean O O Whether the value of MACAddress parameter can

be overridden. If false (0), the CPE’s default value
is used (or restored if it had previously been
overridden).

ConnectionTrigger string R R Trigger used to establish the IP connection.
Enumeration of:

“OnDemand”
“AlwaysOn”
“Manual”

RouteProtocolRx string R R Defines the Rx protocol to be used. Enumeration
of:

“Off”
“RIPv1” (Optional)
“RIPv2” (Optional)
“OSPF” (Optional)

PortMappingNumberOfEntries unsignedInt - R Total number of port mapping entries.

InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANIPConnection.{i}.-
PortMapping.{i}.

object R R Port mapping table.

PortMappingEnabled boolean R R Enables or disables the port mapping instance.
On creation, an entry is disabled by default.

PortMappingLeaseDuration unsignedInt R R Determines the time to live, in seconds, of a port-
mapping lease. A value of 0 means the port
mapping is static. Static port mappings do not
necessarily mean persistence of these mappings
across device resets or reboots.

RemoteHost string R R This parameter is the IP address of the source of
inbound packets. An empty string indicates a
‘wildcard’ (this will be a wildcard in most cases).
CPE are required only to support wildcards.
When RemoteHost is a wildcard, all traffic sent to
the ExternalPort on the WAN interface of the
gateway is forwarded to the InternalClient on the
InternalPort.
When RemoteHost is specified as one external IP
address, the NAT will only forward inbound
packets from this RemoteHost to the
InternalClient, all other packets will be dropped.

ExternalPort unsignedInt R R The external port that the NAT gateway would
listen on for connection requests to a
corresponding InternalPort. Inbound packets to
this external port on the WAN interface should be
forwarded to InternalClient on the InternalPort.
A value of zero (0) represents a ‘wildcard.’ If this
value is a wildcard, connection request on all
external ports (that are not otherwise mapped) will
be forwarded to InternalClient. In the wildcard
case, the value(s) of InternalPort on InternalClient
are ignored.

InternalPort unsignedInt R R The port on InternalClient that the gateway should
forward connection requests to. A value of zero
(0) is not allowed.

PortMappingProtocol string R R The protocol of the port mapping. Enumeration of:
“TCP”
“UDP”

 Page 85 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InternalClient string R R The IP address or DNS host name of an internal

client (on the LAN).
Support for an IP address is mandatory, while
support for DNS host names is optional.
This value cannot be an empty string.
It must be possible to set the InternalClient to the
broadcast IP address 255.255.255.255 for UDP
mappings. This is to enable multiple NAT clients
to use the same well-known port simultaneously.

PortMappingDescription string(256) R R User-readable description of this port mapping.

InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANIPConnection.{i}.-
Stats.

object - C This object contains statistics for all connections
within the same WANConnectionDevice that
share a common MAC address. The contents of
this object should be identical for each such
connection.
This object is required for all WANConnection-
Devices that can support an Ethernet-layer on this
interface (e.g., PPPoE, IPoE).

EthernetBytesSent unsignedInt - C Total number of bytes sent over all connections
within the same WANConnectionDevice that
share a common MAC address since the CPE
was last reset.

EthernetBytesReceived unsignedInt - C Total number of bytes received over all
connections within the same WANConnection-
Device that share a common MAC address since
the CPE was last reset.

EthernetPacketsSent unsignedInt - C Total number of Ethernet packets sent over all
connections within the same WANConnection-
Device that share a common MAC address since
the CPE was last reset.

EthernetPacketsReceived unsignedInt - C Total number of Ethernet packets received over all
connections within the same WANConnection-
Device that share a common MAC address since
the CPE was last reset.

InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANPPPConnection.{i}.

object R R This object enables configuration of PPP
connections on the WAN interface of a CPE. This
object is required for all WANConnectionDevices
that employ PPP addressing, and must not be
active for WANConnectionDevices that do not
employ PPP addressing.

Enable boolean R R Enables or disables the connection instance. On
creation of a WANPPPConnection instance, it is
initially disabled.

ConnectionStatus string - R Current status of the connection. Enumeration of:
“Unconfigured”
“Connecting”
“Authenticating”
“Connected”
“PendingDisconnect”
“Disconnecting”
“Disconnected”

 Page 86 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
PossibleConnectionTypes string - R A comma-separated list indicating the types of

connections possible for this connection instance.
Each element of the list is an enumeration of:

“Unconfigured”
“IP_Routed”
“DHCP_Spoofed”
“PPPoE_Bridged”
“PPPoE_Relay”
“PPTP_Relay”
“L2TP_Relay”

ConnectionType string R R Specifies the connection type of the connection
instance. Enumeration of:

“Unconfigured”
“IP_Routed”
“DHCP_Spoofed”
“PPPoE_Bridged”
“PPPoE_Relay”
“PPTP_Relay”
“L2TP_Relay”

Name string(256) R R User-readable name of this connection.

Uptime unsignedInt - R The time in seconds that this connection has been
up.

LastConnectionError string - R The cause of failure for the last connection setup
attempt. Enumeration of:

“ERROR_NONE”

“ERROR_ISP_TIME_OUT”

“ERROR_COMMAND_ABORTED”

“ERROR_NOT_ENABLED_FOR_INTERNET”

“ERROR_BAD_PHONE_NUMBER”

“ERROR_USER_DISCONNECT”

“ERROR_ISP_DISCONNECT”

“ERROR_IDLE_DISCONNECT”

“ERROR_FORCED_DISCONNECT”

“ERROR_SERVER_OUT_OF_RESOURCES”

“ERROR_RESTRICTED_LOGON_HOURS”

“ERROR_ACCOUNT_DISABLED”

“ERROR_ACCOUNT_EXPIRED”

“ERROR_PASSWORD_EXPIRED”

“ERROR_AUTHENTICATION_FAILURE”

“ERROR_NO_DIALTONE”

“ERROR_NO_CARRIER”

“ERROR_NO_ANSWER”

“ERROR_LINE_BUSY”

“ERROR_UNSUPPORTED_BITSPERSECOND”

“ERROR_TOO_MANY_LINE_ERRORS”

“ERROR_IP_CONFIGURATION”

“ERROR_UNKNOWN”

AutoDisconnectTime unsignedInt O O The time in seconds since the establishment of
the connection after which connection termination
is automatically initiated by the CPE. This occurs
irrespective of whether the connection is being
used or not. A value of 0 (zero) indicates that the
connection is not to be shut down automatically.

 Page 87 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
IdleDisconnectTime unsignedInt O O The time in seconds that if the connection remains

idle, the CPE automatically terminates the
connection. A value of 0 (zero) indicates that the
connection is not to be shut down automatically.

WarnDisconnectDelay unsignedInt O O Time in seconds the Status remains in the
pending disconnect state before transitioning to
disconnecting state to drop the connection.

RSIPAvailable boolean - R Indicates if Realm-specific IP (RSIP) is available
as a feature on the CPE.

NATEnabled boolean C R Indicates if Network Address Translation (NAT) is
enabled for this connection. This parameter
MUST be writable if NAT is supported by the CPE.

Username string(64) R R Username to be used for authentication.

Password string(64) R - Password to be usef for authentication.
When read, this parameter returns an empty
string, regardless of the actual value.

PPPEncryptionProtocol string - O Describes the PPP encryption protocol used
between the WAN device and the ISP POP.
Enumeration of:

“None”
“MPPE”

PPPCompressionProtocol string - O Describes the PPP compression protocol used
between the WAN device and the ISP POP.
Enumeration of:

“None”
“Van Jacobsen”
“STAC LZS”

PPPAuthenticationProtocol string - O Describes the PPP authentication protocol used
between the WAN device and the ISP POP.
Enumeration of:

“PAP”
“CHAP”
“MS-CHAP”

ExternalIPAddress string - R This is the external IP address used by NAT for
this connection.

RemoteIPAddress string - O The remote IP address for this connection.

MaxMRUSize unsignedInt
[1:1540]

O O The maximum allowed size of frames sent from
the remote peer.

CurrentMRUSize unsignedInt
[1:1540]

- O The current MRU in use over this connection.

DNSEnabled boolean O R Whether or not the device should attempt to query
a DNS server across this connection.

DNSOverrideAllowed boolean O R Whether or not a manually set, non-empty DNS
address can be overridden by a DNS entry
received from the WAN.

DNSServers string O R Comma separated list of DNS server IP
addresses for this connection. Support for more
than three DNS Servers is Optional.

MACAddress string O R The physical address of the WANIPConnection if
applicable. Configurable only if
MACAddressOverride is present and true (1).

MACAddressOverride boolean O O Whether the value of MACAddress parameter can
be overridden. If false (0), the CPE’s default value
is used (or restored if it had previously been
overridden).

 Page 88 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
TransportType string - R PPP transport type of the connection.

Enumeration of:
“PPPoA”
“PPPoE”
“L2TP” (for future use)
“PPTP” (for future use)

PPPoEACName string(256) R R PPPoE Access Concentrator.

PPPoEServiceName string(256) R R PPPoE Service Name.

ConnectionTrigger string R R Trigger used to establish the IP connection.
Enumeration of:

“OnDemand”
“AlwaysOn”
“Manual”

RouteProtocolRx string R R Defines the Rx protocol to be used. Enumeration
of:

“Off”
“RIPv1” (Optional)
“RIPv2” (Optional)
“OSPF” (Optional)

PPPLCPEcho unsignedInt - O PPP LCP Echo period in seconds.

PPPLCPEchoRetry unsignedInt - O Number of PPP LCP Echo retries within an echo
period.

PortMappingNumberOfEntries unsignedInt - R Total number of port mapping entries.

InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANPPPConnection.-
{i}.PortMapping.{i}.

object R R Port mapping table.

PortMappingEnabled boolean R R Enables or disables the port mapping instance.
On creation, an entry is disabled by default.

PortMappingLeaseDuration unsignedInt R R Determines the time to live, in seconds, of a port-
mapping lease. A value of 0 means the port
mapping is static. Static port mappings do not
necessarily mean persistence of these mappings
across device resets or reboots.

RemoteHost string R R This parameter is the IP address of the source of
inbound packets. An empty string indicates a
‘wildcard’ (this will be a wildcard in most cases).
CPE are required only to support wildcards.
When RemoteHost is a wildcard, all traffic sent to
the ExternalPort on the WAN interface of the
gateway is forwarded to the InternalClient on the
InternalPort.
When RemoteHost is specified as one external IP
address, the NAT will only forward inbound
packets from this RemoteHost to the
InternalClient, all other packets will be dropped.

ExternalPort unsignedInt R R The external port that the NAT gateway would
listen on for connection requests to a
corresponding InternalPort. Inbound packets to
this external port on the WAN interface should be
forwarded to InternalClient on the InternalPort.
A value of zero (0) represents a ‘wildcard.’ If this
value is a wildcard, connection request on all
external ports (that are not otherwise mapped) will
be forwarded to InternalClient. In the wildcard
case, the value(s) of InternalPort on InternalClient
are ignored.

 Page 89 of 109

CPE WAN Management Protocol TR-069

Name10 Type Write11 Read Description
InternalPort unsignedInt R R The port on InternalClient that the gateway should

forward connection requests to. A value of zero
(0) is not allowed.

PortMappingProtocol string R R The protocol of the port mapping. Enumeration of:
“TCP”
“UDP”

InternalClient string R R The IP address or DNS host name of an internal
client (on the LAN).
Support for an IP address is mandatory, while
support for DNS host names is optional.
This value cannot be an empty string.
It must be possible to set the InternalClient to the
broadcast IP address 255.255.255.255 for UDP
mappings. This is to enable multiple NAT clients
to use the same well-known port simultaneously.

PortMappingDescription string(256) R R User-readable description of this port mapping.

InternetGatewayDevice.WANDevice.{i}.WAN-
ConnectionDevice.{i}.WANPPPConnection.-
{i}.Stats.

object - C This object contains statistics for all connections
within the same WANConnectionDevice that
share a common MAC address. The contents of
this object should be identical for each such
connection.
This object is required for all WANConnection-
Devices that can support an Ethernet-layer on this
interface (e.g., PPPoE, IPoE).

EthernetBytesSent unsignedInt - C Total number of bytes sent over all connections
within the same WANConnectionDevice that
share a common MAC address since the CPE
was last reset.

EthernetBytesReceived unsignedInt - C Total number of bytes received over all
connections within the same WANConnection-
Device that share a common MAC address since
the CPE was last reset.

EthernetPacketsSent unsignedInt - C Total number of Ethernet packets sent over all
connections within the same WANConnection-
Device that share a common MAC address since
the CPE was last reset.

EthernetPacketsReceived unsignedInt - C Total number of Ethernet packets received over all
connections within the same WANConnection-
Device that share a common MAC address since
the CPE was last reset.

 Page 90 of 109

CPE WAN Management Protocol TR-069

Appendix C. Signed Vouchers

C.1 Overview
The CPE WAN Management Protocol defines an optional mechanism for securely enabling or disabling
optional CPE capabilities. Unlike Parameters, the Voucher mechanism provides an additional layer of
security for optional capabilities that require secure tracking (such as those involving payment).

A Voucher is a digitally signed data structure that instructs a CPE to enable or disable a set of Options. An
Option is any optional capability of a CPE. When an Option is enabled, the Voucher may specify various
characteristics that determine under what conditions that Option persists.

C.2 Control of Options Using Vouchers
An Option may be disabled, enabled, or enabled with expiration. An Option that is enabled with no
expiration stays enabled until the Server explicitly disables it. An Option that is enabled with expiration
stays enabled only for the duration specified in the Voucher. After the specified duration period, the CPE
MUST disable the Option itself.

An Option may also be defined as either transferable or non-transferable. If not otherwise specified, an
Option enabled by a Voucher is non-transferable. A non-transferable Option is automatically disabled if
the CPE becomes associated with a different broadband service provider than was in use at the time the
Option was enabled. A transferable Option is one that is maintained with the CPE regardless of any
subsequent changes of service provider.

Each Voucher, which may contain instructions to enable or disable one or more Options, MUST be
digitally signed using the XML-Signature format [13]. Before applying the instructions in the Voucher, a
CPE MUST validate the signature and authenticate the signer.

A Voucher is specific to a single CPE and cannot be used on a CPE other than the one indicated in the
Voucher. This ensures that the mechanism used to distribute Vouchers can be used to ensure that only
those CPEs that have properly appropriated an Option can enabled that Option.

A CPE supporting the use of Vouchers must support a network time synchronization protocol such as NTP
or SNTP to ensure access to accurate time and date information. Application of a received voucher by the
CPE, or comparison of an existing voucher against its expiration date, should only occur once the CPE has
established network time.

The following Voucher-related methods are defined in Appendix A of this specification:

• SetVouchers: Allows a Server to download a list of Vouchers to a CPE. Each Voucher may enable or
disable the Options defined within that Voucher.

• GetOptions: Allows a Server to query the state of any or all Options supported by the CPE.

C.3 Voucher Definition
The RPC method SetVouchers allows a Server to enable, disable, or modify the state of one or more
Options. The SetVouchers method takes as an argument an array of Vouchers. Each Voucher in the array
is separately Base64 encoded.

 Page 91 of 109

http://www.w3.org/2000/09/xmldsig

CPE WAN Management Protocol TR-069

Prior to Base64 encoding, each Voucher is a signed XML structure utilizing the XML-Signature format
[13]. Each independently signed Voucher may include one or more Option specifications. Each Option
specification is a structure that specifies the intended state for the specified Option.

The elements of the Option specification are defined in Table 6 . An Option may contain additional XML
elements specific to the particular Option. An example Option specification structure is shown in Figure 5.
An example of an entire signed Voucher is shown in Figure 6. In this example, two separate Options are
enabled in the same Voucher.

2

Table 62 – Option specification definition

Name Type Description
VSerialNum string(64) Unique serial number identifying the particular Voucher. For a given

ACS, each new Voucher created MUST be assigned a distinct
Voucher serial number. This value MUST be unique across all CPE
managed by that ACS and all Vouchers issued to a given CPE at
different times.

DeviceId DeviceIdStruct A structure that uniquely identifies the particular CPE for which the
Voucher is to apply. This structure is defined in Table 63.
On receipt of a Voucher, a CPE MUST ensure that the information in
the device ID matches its actual identity. If not, it MUST ignore the
Voucher and respond with a Request Denied fault.

OptionIdent string(64) Identifying name of the particular Option to be enabled or disabled.

OptionDesc string(256) Text description of the Option.

StartDate dateTime Optional element. The date and time in UTC that the Option is to be
enabled (only meaningful if Mode = EnableWithExpiration or
EnableWithoutExpiration). If this element is not present, or if the
specified time has already passed, an Option to be enabled is
enabled immediately.

Duration unsignedInt Required if Mode = EnableWithExpiration. For an Option enabled
with expiration, this element specifies the duration the Option will
remain enabled in units of DurationUnits. If a start date is specified,
the duration is relative to that start date.

DurationUnits string Required if Mode = EnableWithExpiration. This element specifies the
units in which the duration element is specified. The allowed values
are:

“Days”
“Months”

Mode string This element specifies whether the designated Option is to be
enabled or disabled, and if enabled, whether or not an expiration is
specified. The allowed values are:

“Disable”
“EnableWithExpiration
“EnableWithoutExpiration

Transferable boolean Optional element. A value of true (1) indicates that the Option is
considered transferable, meaning that Option is to remain enabled
until any specified expiration date regardless of any changes in
service provider.
If this element is false (0) or not present, the Option is considered
non-transferable, requiring the Option be disabled upon change in
service provider, associated with any change to the ProvisioningCode
as defined in Appendix B.

Table 63 – DeviceIdStruct definition

Name Type Description
Manufacturer string(64) The manufacturer of the device. This parameter is for display only and

need not be checked as part of the validation.

 Page 92 of 109

http://www.w3.org/2000/09/xmldsig

CPE WAN Management Protocol TR-069

Name Type Description
OUI string(6) Organizationally unique identifier of the device manufacturer. Represented

as a six hexadecimal-digit value using all upper-case letters and including
any leading zeros. The value MUST be a valid OUI as defined in [9].

ProductClass string(64) Identifier of the class of product for which the serial number applies. That
is, for a given manufacturer, this parameter is used to identify the product
or class of product over which the SerialNumber parameter is unique.

SerialNumber string(64) Identifier of the particular device that is unique for the indicated class of
product and manufacturer.

Figure 5 – Example Option specification
<dsig:Object xmlns="" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" Id="option0">
 <Option>
 <VSerialNum>987654321</VSerialNum>
 <DeviceId>
 <Manufacturer>2Wire</Manufacturer>
 <OUI>00D09E</OUI>
 <ProductClass>Gateway</ProductClass>
 <SerialNumber>123456789</SerialNumber>
 </DeviceId>
 <OptionIdent>Option Name</OptionIdent>
 <OptionDesc>Option Description</OptionDesc>
 <StartDate>20021025T12:06:34</StartDate>
 <Duration>280</Duration>
 <DurationUnits>Days</DurationUnits>
 <Mode>EnableWithExpiration</Mode>
 </Option>
</dsig:Object>

Figure 6 – Example signed Voucher
<Signature xmlns="http://www.w3.org/2000/09/xmldsig#">
 <SignedInfo>
 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"></CanonicalizationMethod>
 <SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#dsa-

sha1"></SignatureMethod>
 <Reference URI="#option0">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"></Transform>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>
 <DigestValue>TUuSqr2utLtQM5tY2DB1jL3nV00=</DigestValue>
 </Reference>
 <Reference URI="#option1">
 <Transforms>
 <Transform Algorithm="http://www.w3.org/TR/2001/REC-xml-c14n-

20010315"></Transform>
 </Transforms>
 <DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></DigestMethod>
 <DigestValue>/YX1C/E6zNf0+w4lG66NeXGOQB0=</DigestValue>
 </Reference>
 </SignedInfo>
 <SignatureValue>
 KAMfqOSnmGH52qRVGLNFEEM4PPkRSmMUGr2D8E3vwwW280e1Bn5pwQ==
 </SignatureValue>
 <KeyInfo>
 <KeyValue>
 <DSAKeyValue>
 <P>
 /X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZPY1Y+r/F9bow9s
 ubVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7g/bT
 xR7DAjVUE1oWkTL2dfOuK2HXKu/yIgMZndFIAcc=
 </P>
 <Q>l2BQjxUjC8yykrmCouuEC/BYHPU=</Q>

 Page 93 of 109

CPE WAN Management Protocol TR-069

 <G>
 9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFn
 Ej6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWRbqN/C/ohNWLx+2J6ASQ7zKTx
 vqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSo=
 </G>
 <Y>
 TBASA/mjLI8bc2KM7u9X6nHHvjmPgZtTBhr1/Fzs2AkdYCYMwyy+v+OXU7u5e18JuK
 G7/uolVhjXNSn6ZgObF+wuMoyP/OUmNbSkdN1aRXXHPRsW2CcG3vjfV+Csg/LP3zfD
 xDkImsC8LuKXht/g4+nksA/3icRQXWagQJU9pUQ=
 </Y>
 </DSAKeyValue>
 </KeyValue>
 <X509Data>
 <X509IssuerSerial>
 <X509IssuerName>
 EMAILADDRESS=name@2wire.com,CN=2Wire,OU=CMS,O=2Wire,L=San\20Jose,

ST=California,C=US
 </X509IssuerName>
 <X509SerialNumber>4</X509SerialNumber>
 </X509IssuerSerial>
 <X509SubjectName>
 CN=eng.bba.certs.2wire.com,OU=CMS,O=2Wire,L=San\20Jose,ST=CA,C=US
 </X509SubjectName>
 <X509Certificate>
MIIEUjCCA7ugAwIBAgIBBDANBgkqhkiG9w0BAQUFADCBhDELMAkGA1UEBhMCVVMxEzARBgNVBAgT
CkNhbGlmb3JuaWExETAPBgNVBAcTCFNhbiBKb3NlMQ4wDAYDVQQKEwUyV2lyZTEMMAoGA1UECxMD
Q01TMQ4wDAYDVQQDEwUyV2lyZTEfMB0GCSqGSIb3DQEJARYQZWJyb3duQDJ3aXJlLmNvbTAeFw0w
MjA5MDUyMDU4MTZaFw0xMjA5MDIyMDU4MTZaMG0xCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTER
MA8GA1UEBxMIU2FuIEpvc2UxDjAMBgNVBAoTBTJXaXJlMQwwCgYDVQQLEwNDTVMxIDAeBgNVBAMT
F2VuZy5iYmEuY2VydHMuMndpcmUuY29tMIIBtzCCASwGByqGSM44BAEwggEfAoGBAP1/U4EddRIp
Ut9KnC7s5Of2EbdSPO9EAMMeP4C2USZpRV1AIlH7WT2NWPq/xfW6MPbLm1Vs14E7gB00b/JmYLdr
mVClpJ+f6AR7ECLCT7up1/63xhv4O1fnxqimFQ8E+4P208UewwI1VBNaFpEy9nXzrith1yrv8iID
GZ3RSAHHAhUAl2BQjxUjC8yykrmCouuEC/BYHPUCgYEA9+GghdabPd7LvKtcNrhXuXmUr7v6OuqC
+VdMCz0HgmdRWVeOutRZT+ZxBxCBgLRJFnEj6EwoFhO3zwkyjMim4TwWeotUfI0o4KOuHiuzpnWR
bqN/C/ohNWLx+2J6ASQ7zKTxvqhRkImog9/hWuWfBpKLZl6Ae1UlZAFMO/7PSSoDgYQAAoGATBAS
A/mjLI8bc2KM7u9X6nHHvjmPgZtTBhr1/Fzs2AkdYCYMwyy+v+OXU7u5e18JuKG7/uolVhjXNSn6
ZgObF+wuMoyP/OUmNbSkdN1aRXXHPRsW2CcG3vjfV+Csg/LP3zfDxDkImsC8LuKXht/g4+nksA/3
icRQXWagQJU9pUSjgdAwgc0wHQYDVR0OBBYEFMTl/ebdHLjaEoSS1PcLCAdFX32qMIGbBgNVHSME
gZMwgZChgYqkgYcwgYQxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMREwDwYDVQQH
EwhTYW4gSm9zZTEOMAwGA1UEChMFMldpcmUxDDAKBgNVBAsTA0NNUzEOMAwGA1UEAxMFMldpcmUx
HzAdBgkqhkiG9w0BCQEWEGVicm93bkAyd2lyZS5jb22CAQAwDgYDVR0PAQH/BAQDAgeAMA0GCSqG
SIb3DQEBBQUAA4GBAF1PGAbyvA0p+6o7nXfF3jzAdoHdaZh55C8sOQ9J62IF8D1jl6JxR7pjcCp2
iYmWkwQMncGfq+X8xP7BIqntDmIlYXuDTlXbyxXsu6lnT7nCbJwMwlLOxFwN+Axy7BM3NkAFE5Mb
aaoJWtmD1QrvcAFfDhLeBT+tIRueK7Pq9LDS
 </X509Certificate>
 <X509Certificate>
MIICeTCCAeICAQAwDQYJKoZIhvcNAQEEBQAwgYQxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxp
Zm9ybmlhMREwDwYDVQQHEwhTYW4gSm9zZTEOMAwGA1UEChMFMldpcmUxDDAKBgNVBAsTA0NNUzEO
MAwGA1UEAxMFMldpcmUxHzAdBgkqhkiG9w0BCQEWEGVicm93bkAyd2lyZS5jb20wHhcNMDEwNzMx
MDMwNjQ5WhcNMDcwMTIxMDMwNjQ5WjCBhDELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNhbGlmb3Ju
aWExETAPBgNVBAcTCFNhbiBKb3NlMQ4wDAYDVQQKEwUyV2lyZTEMMAoGA1UECxMDQ01TMQ4wDAYD
VQQDEwUyV2lyZTEfMB0GCSqGSIb3DQEJARYQZWJyb3duQDJ3aXJlLmNvbTCBnzANBgkqhkiG9w0B
AQEFAAOBjQAwgYkCgYEA1ISJbL6i0J/6SBoet3aA8fki8s7pb/QUZueWj+0YKoDaQWh4MUCT0K06
N/0Z2cLMVg8JyezEpdnh3lVM/Ni5ow2Mst4dpdccQQEHouqwNUWIBFU196/LPRyLjoM2NeIXSKMj
AdPwvcenxmqeVBr/ZUmr4JQpdSI2AZJuHvCIjUsCAwEAATANBgkqhkiG9w0BAQQFAAOBgQBa3CCX
ga9L0qrGWxpNj312Az+tYz8bpEp2e2pAVrJHdW/CJ0uRlE341oTkhfYFa5CuuieF7Jcwf1B3+cGo
JrLWqeKqsNnrbmMFC/9hnrLlgZKEKi0POaGSFS/Pw9nodGWFZCiaQmeG+J6CWeASiFMdwgRGvESW
axfzzIKiXsXwkA==
 </X509Certificate>
 </X509Data>
 </KeyInfo>
 <dsig:Object xmlns="" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" Id="option0">
 <Option>
 <VSerialNum>987654321</VSerialNum>
 <DeviceId>
 <Manufacturer>2Wire</Manufacturer>
 <OUI>00D09E</OUI>
 <ProductClass>Gateway</ProductClass>
 <SerialNumber>123456789</SerialNumber>
 </DeviceId>
 <OptionIdent>First option name</OptionIdent>

 Page 94 of 109

CPE WAN Management Protocol TR-069

 <OptionDesc>First option description</OptionDesc>
 <StartDate>20021025T12:06:34</StartDate>
 <Duration>280</Duration>
 <DurationUnits>Days</DurationUnits>
 <Mode>EnableWithExpiration</Mode>
 </Option>
 </dsig:Object>
 <dsig:Object xmlns="" xmlns:dsig="http://www.w3.org/2000/09/xmldsig#" Id="option1">
 <Option>
 <VSserialNum>987654322</VSerialNum>
 <DeviceId>
 <Manufacturer>2Wire</Manufacturer>
 <OUI>00D09E</OUI>
 <ProductClass>Gateway</ProductClass>
 <SerialNumber>123456789</SerialNumber>
 </DeviceId>
 <OptionIdent>Second option name</OptionIdent>
 <OptionDesc>Second option description</OptionDesc>
 <StartDate>20021025T12:06:34</StartDate>
 <Duration>280</Duration>
 <DurationUnits>Days</DurationUnits>
 <Mode>EnableWithExpiration</Mode>
 </Option>
 </dsig:Object>
</Signature>

 Page 95 of 109

CPE WAN Management Protocol TR-069

Appendix D. Web Identity
Management

D.1 Overview
To support web-based applications or other CPE-related web pages on a back-end web site for access from
a browser within the CPE’s local network, the CPE WAN Management Protocol provides an optional
mechanism that allows such web sites to customize their content with explicit knowledge of the customer
associated with that CPE. That is, the location of users browsing from inside the CPE’s LAN can be
automatically identified without any manual login process.

The protocol defines a set of optional interfaces that allow the web site to initiate communication between
the CPE and ACS, which allows a web site in communication with that ACS to identify which CPE the
user is operating behind. This allows the web site to customize its content to be specific to the associated
broadband account, the particular type of CPE, or any other characteristic that is known to the ACS.

Note—this identification mechanism does not distinguish among different users on the same
network behind a single CPE. In situations where identification of a specific user is required, a
separate identity management mechanism, such as manual login, would be needed.

D.2 Use of the Kicked RPC Method
The CPE WAN Management Protocol defines an optional Kicked RPC method in Appendix A, which may
be used to support web identity management functionality.

The CPE’s invocation of the Kicked method is initiated by an external stimulus to the CPE. This external
stimulus is assumed to be web-based, and thus the associated method provides a means to communicate
information that would be useful in a web-based transaction. A suggested definition of the stimulus
interface is given in section D.4.

The information contained in the Kicked method call includes both the information needed to uniquely
identify the CPE, but also parameters that may be used to associate the method call with a particular web
browser session.

The response to the Kicked method allows the Server to specify a URL to which the browser should be
redirected. This URL may contain CGI arguments that allow the Server to continue to track the browser
session.

D.3 Web Identity Management Procedures
The Web Identity Management mechanism is based on a model in which a web server is associated with
and can communicate with an ACS. Whenever this web server wishes to either identify the user’s CPE or
cause the CPE to establish communication with the ACS for some other purpose, the following sequence of
events may occur (under normal conditions):

1. The user’s browser accesses a web page that requires knowledge of, or communication with, the
user’s CPE.

 Page 96 of 109

CPE WAN Management Protocol TR-069

2. The web site redirects the browser to a specific URL accessible only from the CPE’s private-network
(LAN) interface through which the browser “kicks” the CPE, providing the CPE via CGI arguments
with information it needs to follow the subsequent steps (see section D.4).

3. The CPE notifies the ACS that it has been kicked, using the “Kicked” RPC method call defined in
Appendix A. In this method call, the CPE identifies itself and passes information to uniquely identify
the browser session.

4. The ACS responds to this method call by passing a URL that the CPE should redirect the user’s
browser. This URL would normally include CGI arguments that identify the session state. While the
connection is open, the ACS may also initiate any other appropriate RPC transactions.

5. The CPE responds to the browser’s HTTP request by redirecting the browser to the URL indicated by
the ACS.

This exchange allows the ACS to uniquely identify the CPE; potentially generate a custom page based on
knowledge of the particular user, their equipment, and any associated account privileges; and then direct
the user to that customized page.

The ACS may also initiate any other RPC transactions that are appropriate given the particular user action.
For example, if a user requests a firmware upgrade to their CPE from a web page, the ACS could instruct
the CPE to initiate a file download over the same connection that the ACS responds to the Kicked method
call.

Figure 7 shows the sequence of events associated with this mechanism. The numbers shown correspond to
the step numbers above.

Figure 7 – Sequence of events for the “kick” mechanism

B-NT

ACS

W eb Site

Access
Network

1

2

3

4

5

D.4 LAN Side Interface
A CPE MAY support web identity management by providing a LAN-side web URL accessible from a
browser operating on the local network.

 Page 97 of 109

CPE WAN Management Protocol TR-069

The associated web server in the CPE SHOULD support CGI arguments to be passed to corresponding
arguments in the Kicked RPC method defined in Appendix A. The RECOMMENDED arguments are
listed in Table 6 . 4

Table 64 – Recommended CGI Arguments for the kick URL

Name Type Value
command string(32) The value to be passed in the Command argument of the Kicked

method call. This CGI argument allows the ACS to identify a command
it is to perform in response to the resulting Kicked method call.

arg string(256) The value to be passed in the Arg argument of the Kicked method call.
This CGI argument may be used by the ACS to pass arguments for the
corresponding command. The particular uses for this argument are not
defined.

next string(1024) The value to be passed in the Next argument of the Kicked method
call. This contains the URL the web site wishes the browser be sent
after the Kicked process has completed. The ACS processing the
Kicked method may override this request and return a different URL in
the Kicked response.

To initiate the kick process, the browser would be sent to the CPE’s URL, for example via an HTTP 302
redirect or via a form post. This access would include the CGI arguments as defined in Table 6 . For
example, the browser may be redirected to:

4

http://cpe-host-name/kick.html?command=<#>&arg=<arg>&next=<url>

After the CPE receives the corresponding HTTP GET request, the CPE SHOULD initiate a Kicked
method call, using the CGI arguments to fill in the method arguments as defined in Appendix A.

The CPE SHOULD limit the number of Kicked method calls it sends to the ACS per hour to a defined
maximum value. Receiving a kick request that would result in exceeding this maximum value is
considered a security violation and SHOULD not result in a call to the Kicked method.

 Page 98 of 109

CPE WAN Management Protocol TR-069

Appendix E. Signed Package Format

E.1 Introduction
This document specifies a signed package format that may be used to securely download files into a
recipient device. The format allows one or more files to be encapsulated within a single signed package.
The package format allows the recipient to authenticate the source, and contains instructions for the
recipient to extract and install the contents.

The signed package format is intended to be used for download from a server via HTTP, HTTPS, or FTP
file transfer, or via other means of file transfer from a remote or local source.

E.2 Signed Package Format Structure
The basic format of a signed package file is shown in Figure 8.

Figure 8 – Signed package format

Fixed length
header

Payload
files

Signatures

Command
list

A general description of each of the signed package format components is given in Table . 65

Table 65 – Signed package component summary

Component Description
Header The header is a fixed-length structure including a preamble, format version, and the lengths of

the command list and payload components.

Command list The command list contains a sequence of instructions to be followed in extracting and installing
the files contained within the package.
Each command is in the form of a type-length-value (TLV).

Signatures This section of the package contains a PKCS #7 digital signature block containing a set of zero
or more digital signatures as described in section E.5.

Payload files This section of the package contains one or more files to be installed following the instructions in
the command list.
This document does not define any specific payload file formats.

 Page 99 of 109

CPE WAN Management Protocol TR-069

E.2.1 Encoding Conventions
The following encoding conventions are used throughout this specification unless explicitly stated
otherwise:

• Multi-octet numeric values are encoded in network byte order (big endian format).

• File or directory path names are specified in UNIX format (e.g., “/dir/dir/base.ext”).

E.3 Header Format
The signed package header is a fixed-length 24-octet structure. The format of the header is defined in
Table 6 . 6

Table 66 – Signed package header format

Field Type Description
Preamble 8 octets A fixed sequence of octets containing the following hexadecimal values:

32 57 49 52 45 5F 53 50
An interpreter of the signed package format MUST verify that the preamble
contains exactly this sequence of values for the package to be considered valid.

Major version 32-bit integer Value indicating the major component of the package format version. An
implementation conforming to this specification has a major version of 1 (one).
Changes to the major version denote incompatible changes to this format.

Minor version 32-bit integer Value indicating the minor component of the package format version. An
implementation conforming to this specification has a minor version of 0 (zero).
Changes to the minor version denote compatible changes to the package format.
An implementation implementing this version of the specification should be
capable of interpreting packages encoded using a format with a different minor
version value.

Command list
length

32-bit integer Length in octets of the command list. The command list length MUST be less
than 216.

Payload
length

32-bit integer Length in octets of the payload, including all files contained within it.

E.4 Command List Format
Each command in the command list has a format specified in Table 67.

Table 67 – Command format

Field Type Description
Type 32-bit integer Specifies the particular command.

Length 32-bit integer Specifies the length in octets of the Value field. The total length of the command
is Length + 8 octets.

Value (Conditional) Zero or more octets of parameters associated with the particular command type.

If a recipient of this file format finds a Type value that is unknown to it, it MUST ignore the command and
continue parsing the remainder of the package, using the Length value to skip to the next command, if any.

E.4.1 Command Types
The command list contains two types of commands: package parameters and actions to be taken. Examples
of package parameters include the software version of a contained software image or a timeout for the
remainder of the download. Examples of actions are add, delete, and move. The actions taken together in

 Page 100 of 109

CPE WAN Management Protocol TR-069

the order specified in the command list define the sequence of modifications to the file system required to
extract and install the contained files.

The file-related commands have two variants: one that operates on explicit files and another that operates
on versioned files. The name of a versioned file has a fixed “base” up to 8 characters in length, and an
“extension” that is 3 characters in length. Each time the content of a versioned file is updated, the file
extension is changed to a new value that indicates the file version. Because of this, if an upgrade needs to
replace a versioned file, any existing file with the same base name but different extension must be removed.

The specific commands defined by this specification are listed in Table 6 . 8

Table 68 – Command Type summary

Type Command name
0 End

1 Extract File

2 Extract Versioned File

3 Add File

4 Add Versioned File

5 Remove File

6 Remove Versioned File

7 Remove Sub-Tree

8 Move File

9 Move Versioned File

10 Version

11 Description

12 Recoverable Timeout

13 Unrecoverable Timeout

14 Initial Timeout

15 Initial Activity Timeout

16 Reboot

17 Format File System

18 Minimum Version

19 Maximum Version

20 Role

21 Minimum Non-Volatile Storage

22 Minimum Volatile Storage Size

Reserved 23

Reserved 24

25 Required Attributes

1000-
9999

Vendor-specific commands

E.4.2 End Command
This command signifies the end of the command list. This command need not be present in a command
list, but if encountered a recipient MUST stop parsing the remainder of the command list portion of the
package.

The Length parameter for this command MUST be 0 (zero), indicating that no Value field follows.

 Page 101 of 109

CPE WAN Management Protocol TR-069

E.4.3 Extract and Add Commands
The extract and add commands include Extract File, Extract Versioned File, Add File, and Add
Versioned File.

The extract commands instruct the recipient to remove any existing file of the same name and replace it
with the specified file in the payload.

The add commands instruct the recipient to first check for an existing file of the same name, and only
install the new file if no existing file can be found.

For the versioned file variants of these commands, the above operations consider an existing file as any file
that has the same base name as the specified file. That is, the Extract Versioned File command removes all
existing files with the same base name and any extension prior to installing the new file. Similarly, the Add
Versioned File command checks for any file with the same base name as the specified file, regardless of
extension, and only installs the new file if no such file can be found.

When a new file is to be created in a directory that does not exist, the recipient MUST create the required
directory.

All of the extract and add commands include information in the Value portion of the command. The format
of this information is defined in Table 6 . 9

Table 69 – Value format for the extract and add commands

Field Type Description
Flags 32-bit integer A bit-field defined as follows:

Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.

Path Offset 32-bit integer The offset in octets from the beginning of the Value field to the Path field in this
command.

Path Length 32-bit integer The length of the Path field in octets.

Hash Type 32-bit integer Type of hash algorithm used in creating the Hash field. The following values are
currently defined:
1 = SHA-1. When set to this value, the Hash field contains the 20-octet SHA-1
hash of the specified file. The Hash Length value in this case MUST be set to 20
(decimal).
All other values are reserved.

Hash Offset 32-bit integer The offset in octets from the beginning of the Value field to the Hash field in this
command.

Hash Length 32-bit integer The length of the Hash field in octets.

File Offset 32-bit integer The offset in octets from the beginning of the payload portion of the package to
the beginning of the specified file.

File Length 32-bit integer The length of the file payload in octets. The actual contents of the file are found
in the file payload portion of the package.

Path String of length
Path Length

Path of the specified file, including the directory tree and file name.

Hash Octet string of
length Hash
Length

Hash of the payload file using the hash algorithm defined in the Hash Type field.
The hash of the payload file is included in the command because the signatures
validate only the package header and command list. By including the file hash in
the command, the signature ensures the validity of the file contents.

E.4.4 Remove Commands
The remove commands include Remove File, Remove Versioned File, and Remove Sub-Tree.

 Page 102 of 109

CPE WAN Management Protocol TR-069

The Remove File command removes the file with the specified path, if it exists.

The Remove Versioned File command removes all files with the same base as the specified file, regardless
of extension.

The Remove Sub-Tree command removes all files and directories beneath and including the specified path.

All of the remove commands include information in the Value portion of the command. The format of this
information is defined in Table 7 . 0

Table 70 – Value format for the remove commands

Field Type Description
Flags 32-bit integer A bit-field defined as follows:

Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.

Path Offset 32-bit integer The offset in octets from the beginning of the Value field to the Path field in this
command.

Path Length 32-bit integer The length of the Path field in octets.

Path String of length
Path Length

Path of the specified file or directory.

E.4.5 Move Commands
The move commands include Move File and Move Versioned File.

The Move File command renames a file to the name specified in this command. If the destination path
specified indicates a different directory, the file is moved to the indicated destination directory.

The Move Versioned File command moves a file matching the base name of the file specified in the source
path, regardless of the extension. If more than one such file exists in the specified directory, only one of
the files is moved and the others are deleted. If the versioned file extension string is a decimal number,
then the lowest numbered file is moved and the rest are deleted.

In all cases, if there is already a file with the same path as the specified destination file, the move
commands will overwrite that file.

If the source file specified in a move command does not exist, no action is taken, and the recipient
continues to process the remaining commands in the command list.

All of the move commands include information in the Value portion of the command. The format of this
information is defined in Table 71.

Table 71 – Value format for the move commands

Field Type Description
Flags 32-bit integer A bit-field defined as follows:

Bit 0 (LSB): Unsafe Flag. A 1 (one) value of this flag indicates that if this
command completes successfully, but a subsequent command in the
command list fails, the recipient device will be left in an unsafe state, and
SHOULD follow its procedures for recovery of its file system to a known
safe state.

All other bits are reserved and MUST be set to 0 (zero) and MUST be ignored by
the recipient.

Source Path
Offset

32-bit integer The offset in octets from the beginning of the Value field to the Source Path field
in this command.

 Page 103 of 109

CPE WAN Management Protocol TR-069

Field Type Description
Source Path
Length

32-bit integer The length of the Source Path field in octets.

Destination
Path Offset

32-bit integer The offset in octets from the beginning of the Value field to the Destination Path
field in this command.

Destination
Path Length

32-bit integer The length of the Destination Path field in octets.

Source Path String of length
Source Path
Length

Path of the source file.

Destination
Path

String of length
Destination Path
Length

Path of the destination to which the source file is to be moved/renamed.

E.4.6 Version and Description Commands
The Value field for both the Version and Description commands contain a single UTF-8 string to be used
for informational, display, or logging purposes.

The Version field is intended to indicate the overall version associated with the package. For example, if
the package contains a software upgrade (which may include many individual files), the Version field may
be used to indicate the new software version associated with the upgrade.

E.4.7 Timeout Commands
The timeout commands include Initial Timeout, Initial Activity Timeout, Recoverable Timeout, and
Unrecoverable Timeout.

The timeout commands specify a timeout value for the continued download of the package file before the
download should be terminated. These commands are to accommodate the case where the command and
signature portions of the package are downloaded and interpreted prior to downloading the remainder of the
package file. The timeout commands may be used to control the timeout parameters associated with a
download process of this type. If the package is downloaded or received as a whole prior to interpreting
the package contents, the timeout commands may be ignored.

Each timeout command includes information in the Value portion of the command. The format of this
information is defined in Table 7 . 2

Table 72 – Value format for the timeout commands

Field Type Description
Timeout 32-bit Integer The timeout value in seconds relative to the beginning of the package download

operation. A value of 0 (zero) indicates an infinite timeout.

Each of the timeout commands allows a distinct timeout value to be specified, where the Timeout field in
that command indicates the desired value. The use of each timeout value is based on the state of the
recipient as it processes commands using the state transition model shown in Figure 9. The figure shows
the state transitions that occur as each command in the command list is processed in sequence. For each
command processed, the state remains the same until one of the cases indicated by the state transition
arrows occurs.

 Page 104 of 109

CPE WAN Management Protocol TR-069

Figure 9 – Download state diagram used for timeout model

Recoverable
State

Unrecoverable
State

Start
download

Install complete

Remove command
w/ Unsafe flag = 0

Extract, Add, Move, or Remove
w/ Unsafe flag = 1

OR Format File System

End

End

End

Extract, Add, Move, or Remove
w/ Unsafe flag = 1

OR Format File System

Initial State

The above state diagram is used during a download to determine which timeout values to use. The
definition of each of the timeout types associated with the timeout commands is shown in Table 73.

Table 73 – Timeout command definitions

Command Description
Initial Timeout This command sets the download timeout used during the Initial State as shown in

. This timeout is measured from the time the overall package download
began.
Figure 9

Initial Activity Timeout This command sets an activity timeout to be used only during the Initial State as
shown in Figure . The activity timeout is measured from the most recent time any
package data had been transferred to the recipient.

9

Note that during all states other than the Initial State, there is no activity timeout (the
activity timeout is infinite).

Recoverable Timeout This command sets the download timeout used during the Recoverable State as
shown in Figure . This timeout is measured from the time the overall package
download began.

9

Unrecoverable Timeout This command sets the download timeout used during the Unrecoverable State as
shown in Figure . This timeout is measured from the time the overall package
download began.

9

 Page 105 of 109

CPE WAN Management Protocol TR-069

E.4.8 Reboot Command
This command indicates that the recipient reboot in order to complete the installation process. If used, this
command MUST be the last command in the command list (other than End, if present).

The Length parameter for this command MUST be 0 (zero), indicating that no Value field follows.

E.4.9 Format File System
This command indicates that the recipient reformat its file system as part of the installation process. If
used, this command implies that all existing files in the file system (or the portion of the file system
relevant for the installation process) are to be cleared and overwritten by the new files in the package.

The Length parameter for this command MUST be 0 (zero), indicating that no Value field follows.

E.4.10 Minimum and Maximum Version Commands
The Minimum Version and Maximum Version commands are used to specify the range of software version
numbers for which the package is intended to apply.

When a minimum and/or maximum version number is specified in the package using these commands, the
recipient MUST NOT install the files or take any other action specified in the command list if the software
version of the recipient falls outside the indicated range.

This command may be used only if the format of the actual software version associated with the recipient is
in a hierarchical format that can be compared numerically given the procedures outlined below.

The minimum and maximum version commands include information in the Value portion of the command.
The format of this information is defined in Table 7 . 4

Table 74 – Value format for the minimum and maximum version commands

Field Type Description
Version Array of 32-bit

integers
An array of integer elements indicating the version number. This is considered a
hierarchical version number (e.g., “1.0.20.3”), where each successive integer
represents a more minor element of the version number.

The following procedure is used to determine if a version is within the indicated range.

If a Minimum Version is given, then for each element of the Version array, beginning with the first (most
major element):

1. If this element of the recipient’s actual version is greater than the corresponding element of the
minimum version, then the recipient’s version meets the requirement and the procedure is
complete.

2. If this element of the recipient’s actual version number is less than the corresponding element of
the minimum version, then the recipient’s version does not meet the requirement. In this case, the
procedure is complete and the recipient MUST NOT install the files in this package or follow any
of the remaining commands.

3. Otherwise (the values are equal),

a. If this is the last element in the array, then the recipient’s version meets the requirement
and the procedure is complete.

b. Otherwise (more elements remain), the procedure should continue at step 1 using the next
element of the array.

 Page 106 of 109

CPE WAN Management Protocol TR-069

If a Maximum Version is given, then for each element of the Version array, beginning with the first (most
major element):

1. If this element of the recipient’s actual version is less than the corresponding element of the
maximum version, then the recipient’s version meets the requirement and the procedure is
complete.

2. If this element of the recipient’s actual version number is greater than the corresponding element
of the maximum version, then the recipient’s version does not meet the requirement. In this case,
the procedure is complete and the recipient MUST NOT install the files in this package or follow
any of the remaining commands.

3. Otherwise (the values are equal),

a. If this is the last element in the array, then the recipient’s version meets the requirement
and the procedure is complete.

b. Otherwise (more elements remain), the procedure should continue at step 1 using the next
element of the array.

E.4.11 Role Command
The role command is used to indicate the target application or purpose of the package. This is intended to
indicate any side effects or post-processing that may be required for a particular package.

The role commands include information in the Value portion of the command. The format of this
information is defined in Table 7 . 5

Table 75 – Value format for the role command

Field Type Description
Role 32-bit integer An enumeration indicating the target application or purpose of the package. The

following values are defined:
1 = Software upgrade
2 = Software recovery
3 = Web content
4 = Vendor configuration
Values with 0xFF as their most significant octet are to be interpreted as a
vendor-specific Role. In this case, the subsequent three octets contain the OUI
(organizationally unique identifier) identifying the vendor as defined in [9]. When
this value is used, the vendor may define subsequent additional arguments to be
included in this command in order to specifically identify the role. Any additional
arguments are to be interpreted in a vendor-specific manner.
All other values are reserved.

E.4.12 Minimum Storage Commands
The minimum storage commands include Minimum Volatile Storage Size and Minimum Non-Volatile
Storage Size.

The minimum storage commands indicate the minimum requirement of the recipient device to be able to
install the files contained in the package. If present, each command indicates the minimum requirement for
the type of storage indicated by the command name.

6

If the recipient device does not meet a specified minimum requirement, the recipient MUST not install any
of the files in the package or continue processing commands.

The minimum storage commands include information in the Value portion of the command. The format of
this information is defined in Table 7 .

 Page 107 of 109

CPE WAN Management Protocol TR-069

Table 76 – Value format for the minimum storage commands

Field Type Description
Storage Size 32-bit Integer The minimum required storage in bytes of the type indicated by the command.

E.4.13 Required Attributes Command
The Required Attributes command is used to specify additional attributes of the recipient device that are
required in order for the package to be considered valid for installation.

One or more Required Attributes commands may be included in a single package, each indicating a
different class of attributes required.

The Required Attribute command includes information in the Value portion of the command. The format
of this information is defined in Table 7 . 7

Table 77 – Value format for the required attributes command

Field Type Description
Defining Entity 32-bit Integer Identifier indicating the definer of the Class and Attribute values used in this

command. The following values are defined:
A value of 0 (zero) indicates standard Class and Attribute definitions. Standard
definitions are those defined by this version or future versions of this
specification.
Values with 0xFF as their most significant octet indicate vendor-specific Class
and Attribute definitions. In this case, the subsequent three octets contain the
OUI (organizationally unique identifier) identifying the vendor as defined in [9].
If a recipient processes a Required Attributes command with a defining entity
value that it does not recognize, it should ignore the command and continue
processing subsequent commands.

Class 32-bit Integer An enumeration indicating the criterion for which the recipient is to be compared
to determine whether or not this package is appropriate for that device. For a
given criterion, the attribute array field indicates the particular allowed values
associated with that criterion.
In this version of the specification, no standard class values are defined. For
vendor-specific defining entities, the interpretation of class values is vendor-
specific.
If a recipient processes a Required Attributes command with a class value that it
does not recognize, it should ignore the command and continue processing
subsequent commands.

Attribute Array Array of 32-bit
Integer

A variable-length array attribute, where each attribute is an enumeration of a
particular allowed value for the particular class.
If actual value associated with the recipient device matches any of the values
listed in this array, then the recipient meets the specified requirement.
Otherwise, the recipient does not meet the requirement and the package MUST
not be installed.
In this version of the specification, no standard attribute values are defined. For
vendor-specific defining entities, the interpretation of attribute values is vendor-
specific.

E.5 Signatures
The signature section immediately follows the command list section of the package file. The signature
section consists of a digital signature block using the PKCS #7 signature syntax [14].

In particular, the signature block includes exactly one PKCS #7 SignedData object, which contains zero or
more signatures with the following constraints:

• The signatures are “external signatures,” meaning that the signed message is not encapsulated within
the SignedData object. Instead, the signed message data consists of the octet string formed by the
header and the command list components of the package.

 Page 108 of 109

CPE WAN Management Protocol TR-069

• The contentType element of the contentInfo MUST indicate type “data.”

• The content element of the contentInfo MUST be empty, since this is an external signature and the
message data resides outside the signature itself.

• The digestAlgorithm used for each signature MUST be of type SHA-1.

• The digestEncryptionAlgorithm used for each signature MUST be of type RSA.

• The Tag value indicating the Identifier associated with the overall SignedData object MUST be less
than or equal to 30, resulting in a single-octet encoding of the Identifier.

• If there are no signatures in the signature block, there would be no extended certificates or certificate
revocation lists, the SignerInfo set would be empty, and the digestAlgorithms set may be empty. All
the other fields in SignedData must be present as normal. Note that the content of an empty signature
block is independent of the content of the package and thus can be pre-computed as a fixed sequence
of bytes.

If the signature block contains more than one signature, at least one of the signatures must be successfully
validated for the recipient to consider the signed package as trusted.

If one or more signatures are expected by the package recipient, the recipient MUST validate the signature
or signatures prior to processing the commands contained within the command list. If none of the included
signatures are validated, the recipient MUST NOT process any of the commands in the command list or
install any of the files contained in the package.

If the recipient implementation is such that command list validation and processing should be done without
having loaded the entire package file from its source, the recipient MAY assume that the combined length
of the header, command list, and signature block is no greater than 150 kilobytes.

Note that although the signed message data includes only the package header and command list, the
signature assures the integrity of the entire package because all commands that refer to payload files
include a hash of the file contents.

Note also that additional signatures can be added to an existing signed package file without modifying any
part of the file other than the signature block itself. The package format is structured such that the other
content (header, command list, and payload) of the package file need not change if the length of the
signature block changes.

 Page 109 of 109

	Contents
	Introduction
	Functional Components
	Auto-Configuration and Dynamic Service Provisioning
	Software/Firmware Image Management
	Status and Performance Monitoring
	Diagnostics
	Identity Management for Web Applications

	Positioning in the Auto-Configuration Architecture
	Security Goals
	Architectural Goals
	Assumptions
	Terminology
	Document Conventions

	Architecture
	Protocol Components
	Security Mechanisms
	Security Initialization Models

	Architectural Components
	Parameters
	File Transfers
	CPE Initiated Notifications
	Asynchronous ACS Initiated Notifications

	Procedures and Requirements
	ACS Discovery
	Connection Establishment
	CPE Connection Initiation
	ACS Connection Initiation

	Use of SSL/TLS and TCP
	Use of HTTP
	Encoding SOAP over HTTP
	Transaction Sessions
	File Transfers
	Authentication

	Use of SOAP
	RPC Support Requirements
	Transaction Session Procedures
	CPE Operation
	Session Initiation
	Incoming Requests
	Outgoing Requests
	Session Termination

	ACS Operation
	Session Initiation
	Incoming Requests
	Outgoing Requests
	Session Termination

	Transaction Examples

	Normative References

